Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/47430
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorLopes, Renato Vilela-
dc.contributor.authorIshihara, João Yoshiyuki-
dc.contributor.authorBorges, Geovany Araújo-
dc.date.accessioned2024-01-22T15:33:05Z-
dc.date.available2024-01-22T15:33:05Z-
dc.date.issued2023-11-08-
dc.identifier.citationLOPES, Renato V.; ISHIHARA, João Y.; BORGES, Geovany A. New framework for identifying discrete‑time switched linear systems. Journal of the Brazilian Society of Mechanical Sciences and Engineering, [S. l.], v. 45, art. n. 623, 2023. DOI: https://doi.org/10.1007/s40430-023-04505-2.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/47430-
dc.language.isoengpt_BR
dc.publisherSpringerpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleNew framework for identifying discrete‑time switched linear systemspt_BR
dc.typeArtigopt_BR
dc.subject.keywordIdentificação de sistemaspt_BR
dc.subject.keywordSistemas linearespt_BR
dc.subject.keywordAgrupamento de dadospt_BR
dc.subject.keywordFiltragem estocástica híbridapt_BR
dc.identifier.doihttps://doi.org/10.1007/s40430-023-04505-2pt_BR
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s40430-023-04505-2pt_BR
dc.description.abstract1This paper addresses the problem of offline identification of a particular class of hybrid dynamical systems that are discrete-time switched linear state space models. The identification process is carried out from data previously sampled from the system. Unlike most existing methods that prioritize identifying the switching instants first, a new framework is proposed in which the local models are identified first, and the task of identifying the switching instants is performed later. The methodology involves the iterative calculation of discrete and continuous models’ a posteriori probability density function using subspace identification, clustering, data classification, and hybrid stochastic filtering methods. This strategy allows grouping the data most likely to have been generated by the same submodels, thus allowing the estimation of these local models. An essential feature of the algorithm is that the matrices of the different submodels are identified with the same state-space basis allowing them to be evaluated and, if necessary, combined. The performance of the identification procedure is evaluated through numerical examples, and a comparison with a prior method described in the literature is conducted.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-8824-6384pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-5916-0207pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-4265-9471pt_BR
dc.contributor.affiliationUniversity of Brasília, Faculty of Gamapt_BR
dc.contributor.affiliationUniversity of Brasília, Faculty of Technology, Department of Electrical Engineeringpt_BR
dc.contributor.affiliationUniversity of Brasília, Faculty of Technology, Department of Electrical Engineeringpt_BR
dc.description.unidadeFaculdade UnB Gama (FGA)pt_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Elétrica (FT ENE)pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.