http://repositorio.unb.br/handle/10482/47917
Arquivo | Tamanho | Formato | |
---|---|---|---|
AlexandreCabralGodinho_DISSERT.pdf | 3,06 MB | Adobe PDF | Visualizar/Abrir |
Título: | STALLA : um framework para análise de fontes abertas durante a pandemia do Covid-19 |
Autor(es): | Godinho, Alexandre Cabral |
Orientador(es): | Rocha Filho, Geraldo Pereira |
Coorientador(es): | Gonçalves, Vinícius Pereira |
Assunto: | Redes sociais Redes neurais recorrentes Framework Covid-19 Análise de dados Desenvolvimento de sistemas |
Data de publicação: | 27-Fev-2024 |
Data de defesa: | 29-Jun-2023 |
Referência: | GODINHO, Alexandre Cabral. STALLA : um framework para análise de fontes abertas durante a pandemia do Covid-19 . 2023. xi, 51 f., il. Dissertação (Mestrado Profissional em Engenharia Elétrica) — Universidade de Brasília, Brasília, 2023. |
Resumo: | A expansão das redes sociais resultou em um aumento na distribuição de campanhas de desinformação, que colocam em risco a estabilidade democrática nacional, tornando-se um elemento desfavorável para a produção do conhecimento de Inteligência. Com o objetivo de mitigar este óbice, foi proposto o framework STALLA para coleta, tratamento, rotulação automatizada e análise de informações, proporcionando maior eficiência na produção do conhecimento. Assim, o estudo tem por escopo a pandemia do Covid-19, a partir de dados coletados de textos curtos (tweets), no idioma português, da rede social Twitter. Considerando-se os trabalhos correlatos, as Redes Neurais Recorrentes (RNN) apresentam-se como as mais vocacionadas para análises textuais. A partir dessa premissa, o desempenho do STALLA foi analisado comparando-se as implementações das redes LSTM e BiLSTM, resultando em uma acurácia de aproximadamente 70%, valor considerado expressivo para a definição da relevância da informação. |
Abstract: | The spread of social networks has resulted in an increase in the distribution of disinformation campaigns, which put national democratic stability at risk, becoming an unfavorable element for the intelligence knowledge production. In order to mitigate this bottleneck, the STALLA framework was proposed for the collection, treatment, automated labeling and analysis of information, providing greater efficiency in knowledge production. Thus, the study has as scope the Covid-19 pandemic, from data collected from short texts (tweets), in the Portuguese language, from the social network Twitter. Considering the related works, Recurrent Neural Networks (RNN) present themselves as the most suitable for textual analysis. Based on this premise, the performance of STALLA was analyzed by comparing the implementations of LSTM and BiLSTM networks, resulting in an accuracy of approximately 70%, a value considered significant for the definition of information relevance. |
Unidade Acadêmica: | Faculdade de Tecnologia (FT) Departamento de Engenharia Elétrica (FT ENE) |
Informações adicionais: | Dissertação (mestrado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, Programa de Pós-Graduação em Engenharia Elétrica, 2023. |
Programa de pós-graduação: | Programa de Pós-Graduação em Engenharia Elétrica, Mestrado Profissional |
Licença: | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.unb.br, www.ibict.br, www.ndltd.org sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra supracitada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. |
Aparece nas coleções: | Teses, dissertações e produtos pós-doutorado UnB - Covid-19 |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.