http://repositorio.unb.br/handle/10482/48072
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Heras, Iker de las | - |
dc.contributor.author | Pintonello, Matteo | - |
dc.contributor.author | Shumyatsky, Pavel | - |
dc.date.accessioned | 2024-04-12T11:09:05Z | - |
dc.date.available | 2024-04-12T11:09:05Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | HERAS, Iker de las; PINTONELLO, Matteo; SHUMYATSKY, Pavel. Strong conciseness of coprime commutators in profinite groups. Journal of Algebra, [S. l.], v. 633, p. 1-19, 1 November 2023. DOI: https://doi.org/10.1016/j.jalgebra.2023.06.003. | pt_BR |
dc.identifier.uri | http://repositorio2.unb.br/jspui/handle/10482/48072 | - |
dc.language.iso | eng | pt_BR |
dc.publisher | Elsevier Inc. | pt_BR |
dc.rights | Acesso Restrito | pt_BR |
dc.title | Strong conciseness of coprime commutators in profinite groups | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Grupos profinitos | pt_BR |
dc.subject.keyword | Comutadores | pt_BR |
dc.identifier.doi | https://doi.org/10.1016/j.jalgebra.2023.06.003 | pt_BR |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S002186932300282X?via%3Dihub#kws0020 | pt_BR |
dc.description.abstract1 | Let G be a profinite group. The coprime commutators γ∗ j and δ∗ j are defined as follows. Every element of G is both a γ∗ 1 -value and a δ∗ 0 -value. For j ≥ 2, let X be the set of all elements of G that are powers of γ∗ j−1-values. An element a is a γ∗ j -value if there exist x ∈ X and g ∈ G such that a = [x, g] and (|x|, |g|) = 1. For j ≥ 1, let Y be the set of all elements of G that are powers of δ∗ j−1-values. The element a is a δ∗ j -value if there exist x, y ∈ Y such that a = [x, y] and (|x|, |y|) = 1. In this paper we establish the following results. A profinite group G is finite-by-pronilpotent if and only if there is k such that the set of γ∗ k-values in G has cardinality less than 2ℵ0 (Theorem 1.1). A profinite group G is finite-by-(prosoluble of Fitting height at most k) if and only if there is k such that the set of δ∗ k-values in G has cardinality less than 2ℵ0 (Theorem 1.2). | pt_BR |
dc.contributor.affiliation | Heinrich-Heine-Universität, Mathematisches Institut | pt_BR |
dc.contributor.affiliation | Euskal Herriko Unibertsitatea UPV/EHU, Department of Mathematics | pt_BR |
dc.contributor.affiliation | University of Brasilia, Department of Mathematics | pt_BR |
dc.description.unidade | Instituto de Ciências Exatas (IE) | pt_BR |
dc.description.unidade | Departamento de Matemática (IE MAT) | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.