Campo DC | Valor | Idioma |
dc.contributor.advisor | Gonçalves, Rodrigo de Souza | pt_BR |
dc.contributor.author | Olokodana, Noel Kentinus | pt_BR |
dc.date.accessioned | 2024-08-29T20:00:12Z | - |
dc.date.available | 2024-08-29T20:00:12Z | - |
dc.date.issued | 2024-08-29 | - |
dc.date.submitted | 2023-01-30 | - |
dc.identifier.citation | OLOKODANA, Noel Kentinus. Fraudes em relatórios financeiros: efeitos nos preços das ações e previsão por meio da máquina de suporte vetorial. 2023. 108 f., il. Dissertação (Mestrado em Ciências Contábeis) — Universidade de Brasília, Brasília, 2023. | pt_BR |
dc.identifier.uri | http://repositorio2.unb.br/jspui/handle/10482/50221 | - |
dc.description | Dissertação (mestrado) — Universidade de Brasília, Faculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas, Departamento de Ciências Contábeis e Atuariais, Programa de Pós-Graduação em Ciências Contábeis, 2023. | pt_BR |
dc.description.abstract | As ocorrências de fraudes aumentaram muito nos últimos anos, em muitos países
(PricewaterhouseCoopers, 2020). Isto, provavelmente, tem afetado negativamente a eficiência
dos mercados de capitais, tornando-os em um ambiente de desconfiança, causando fugas de
investimentos e hesitação na entrada de novos investidores. Segundo Hung et al. (2015), as
fraudes corporativas não afetam somente os credores ou os acionistas das firmas fraudadoras,
mas afetam também clientes, fornecedores, o mercado financeiro como um todo, o governo, ou
seja, toda a economia. De acordo com Dyck et al. (2010), as fraudes financeiras nos relatórios
contábeis são, geralmente, detectadas muito tempo depois, após as suspeições dos impactos do
crime. Ocorre que a atuação post factum (detecção de fraude) não é eficiente para reduzir ou
eliminar as ocorrências; nesse sentido, uma ação preventiva é relevante e necessária. Há vários
métodos para prevenção de fraudes em relatórios financeiros, e esta pesquisa tem por objetivo
analisar a reação do mercado às fraudes, sem e com o conhecimento deste. Para isso, o estudo
comparou o comportamento dos preços das ações ao redor da data em que a fraude foi cometida
e ao redor da data em que foi descoberta. Em segundo lugar, o estudo analisou a precisão da
máquina de suporte vetorial (SVM) na previsão de fraudes em relatórios financeiros
considerando índices financeiros e índices não financeiros. A pesquisa fez uso da metodologia
de estudos de eventos para alcançar seu primeiro objetivo e da SVM para alcançar seu segundo
objetivo. Retornos anormais positivos foram encontrados um dia depois e do quarto até o
décimo dia depois da realização de fraudes em relatórios financeiros. Sem seu conhecimento,
o mercado reage positivamente à realização de fraudes em relatórios financeiros, gerando
ganhos anormais às entidades fraudadoras. Provavelmente, pelo tempo demorado até a suspeita
de fraude ser julgada pela Comissão de Valores Mobiliários (CVM), o mercado ignora a decisão
do órgão regulador ao reconhecer oficialmente a prática ou manobra suspeita como fraudulenta,
por infringir uma lei. Na pesquisa, variáveis sensíveis para detecção de riscos de fraudes foram
identificadas, e o modelo polinomial da SVM utilizado conseguiu prever riscos de fraudes em
pelo menos 64% dos relatórios financeiros fraudulentos. Os achados contribuem para a
academia no que diz respeito às consequências das fraudes em relatórios financeiros no
mercado, incentivando, assim, outras pesquisas na área. O estudo contribui aos trabalhos dos
auditores e reguladores, recomendando o uso do modelo polinomial de SVM para prever
fraudes em relatórios financeiros. O estudo avança no tratamento de dados financeiros trazendo
à atenção dos pesquisadores que os métodos clássicos como a regressão linear podem não ser
adequadas, em consonância com as conclusões de Adepoju et al. (2019) e Gonçalves (2019) | pt_BR |
dc.language.iso | Português | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.title | Fraudes em relatórios financeiros : efeitos nos preços das ações e previsão por meio da máquina de suporte vetorial | pt_BR |
dc.title.alternative | Financial statement frauds : effect on stock price and prevision via support vector machine | pt_BR |
dc.type | Dissertação | pt_BR |
dc.subject.keyword | Relatórios financeiros | pt_BR |
dc.subject.keyword | Relatórios financeiros - fraude | pt_BR |
dc.subject.keyword | Reação do mercado | pt_BR |
dc.subject.keyword | Estudo de eventos | pt_BR |
dc.rights.license | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.unb.br, www.ibict.br, www.ndltd.org sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra supracitada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | pt_BR |
dc.description.abstract1 | Fraud occurrences have increased significantly in recent years in many countries
(PricewaterhouseCoopers, 2020). Probably, this has negatively affected the efficiency of capital
markets, turning them into an environment of distrust, causing investment flight and hesitation
in the entry of new investors. According to Hung et al. (2015), corporate fraud does not only
affect creditors or shareholders of defrauding firms, but also it affects customers, suppliers, the
financial market as a whole, the government; that is, the entire economy. According to Dyck et
al. (2010), financial fraud in accounting reports is usually detected much later, after suspicions
of the impacts of the crime. It turns out that post factum action (fraud detection) is not efficient
in reducing or eliminating occurrences; in this sense, preventive action is relevant and
necessary. There are several methods for preventing fraud in financial reporting, and this
research aims to analyze the market reaction to fraud without and with its knowledge. For this,
the study compared stock price behavior around the date the fraud was committed and around
the date it was discovered. Secondly, the study analyzed the accuracy of the support vector
machine (SVM) in predicting fraud in financial reports, considering financial indices and nonfinancial indices. The research used event studies methodology to achieve its first objective and
SVM to achieve its second objective. Positive abnormal returns were found one day after and
from the fourth to the tenth day after financial reporting fraud. Without knowledge of the fraud,
the market reacts positively to the performance of fraud in financial reports, generating
abnormal gains for the fraudsters. Probably, due to the time it takes for the suspected fraud to
be judged by the Securities and Exchange Commission of Brazil (CVM), the market ignores
the regulatory agency’s decision when officially recognizing the suspected practice or
maneuver as fraudulent, for breaking the law. Sensitive variables to detect fraud risks were
identified and the SVM polynomial model was capable to predict fraud risks in at least 64% of
fraudulent financial reports. The findings contribute to the academy about the consequences of
fraud in financial reports in the market and also encourage other research. The study also
contributes to the work of auditors and regulators, recommending the SVM polynomial model
to predict fraud in financial reports. The study advances in the treatment of financial data,
bringing to the attention of researchers that classic methods such as linear regression may not
be adequate, in line with the conclusions of Adepoju et al. (2019) and Gonçalves (2019). | pt_BR |
dc.description.unidade | Faculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas (FACE) | pt_BR |
dc.description.unidade | Departamento de Ciências Contábeis e Atuariais (FACE CCA) | pt_BR |
dc.description.ppg | Programa de Pós-Graduação em Ciências Contábeis | pt_BR |
Aparece nas coleções: | Teses, dissertações e produtos pós-doutorado
|