Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/51304
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_MachineLearningApplied.pdf1,57 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSilva, Philippe Barbosa-
dc.contributor.authorAndrade, Michelle-
dc.contributor.authorFerreira, Sara-
dc.date.accessioned2025-01-08T12:40:10Z-
dc.date.available2025-01-08T12:40:10Z-
dc.date.issued2020-10-31-
dc.identifier.citationSILVA, Philippe Barbosa; ANDRADE, Michelle; FERREIRA, Sara. Machine learning applied to road safety modeling: a systematic literature review. Journal of Traffic and Transportation Engineering, [S. l.], v. 7, n. 6, p. 775-790, Dec. 2020. DOI: https://doi.org/10.1016/j.jtte.2020.07.004. Disponível em: https://www.sciencedirect.com/science/article/pii/S2095756420301410?via%3Dihub. Acesso em: 08 jan. 2025.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/51304-
dc.language.isoengpt_BR
dc.publisherElsevier B.V. on behalf of Ownerpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleMachine learning applied to road safety modeling : a systematic literature reviewpt_BR
dc.typeArtigopt_BR
dc.subject.keywordEngenharia de transportespt_BR
dc.subject.keywordModelagem de segurança viáriapt_BR
dc.subject.keywordModelos de previsão de acidentespt_BR
dc.subject.keywordGravidade dos ferimentos em acidentespt_BR
dc.subject.keywordAprendizado de máquinapt_BR
dc.rights.licenseThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.jtte.2020.07.004pt_BR
dc.description.abstract1Road safety modeling is a valuable strategy for promoting safe mobility, enabling the development of crash prediction models (CPM) and the investigation of factors contributing to crash occurrence. This modeling has traditionally used statistical techniques despite acknowledging the limitations of this kind of approach (specific assumptions and prior definition of the link functions), which provides an opportunity to explore alternatives such as the use of machine learning (ML) techniques. This study reviews papers that used ML techniques for the development of CPM. A systematic literature review protocol was conducted, that resulted in the analysis of papers and their systematization. Three types of models were identified: crash frequency, crash classification by severity, and crash frequency and severity. The first is a regression problem, the second, a classificatory one and the third can be approached either as a combination of the preceding two or as a regression model for the expected number of crashes by severity levels. The main groups of techniques used for these purposes are nearest neighbor classification, decision trees, evolutionary algorithms, support-vector machine, and artificial neural networks. The last one is used in many kinds of approaches given the ability to deal with both regression and classification problems, and also multivariate response models. This paper also presents the main performance metrics used to evaluate the models and compares the results, showing the clear superiority of the ML-based models over the statistical ones. In addition, it identifies the main explanatory variables used in the models, which shows the predominance of road-environmental aspects as the most important factors contributing to crash occurrence. The review fulfilled its objective, identifying the various approaches and the main research characteristics, limitations, and opportunities, and also highlighting the potential of the usage of ML in crash analyses.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-3249-9603pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-7469-3186pt_BR
dc.contributor.affiliationGoiano Federal Institute-Rio Verde Campus, Department of Civil Engineeringpt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Civil and Environmental Engineeringpt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Civil and Environmental Engineeringpt_BR
dc.contributor.affiliationUniversity of Porto, Research Centre for Territory, Transports and Environmentpt_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Civil e Ambiental (FT ENC)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Transportespt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.