Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/5502
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2007-Anyelle Nogueira de Souza.pdf150,17 kBAdobe PDFVisualizar/Abrir
Título: Imersões Taut de superfícies não compactas
Autor(es): Souza, Anyelle Nogueira de
Orientador(es): Tenenblat, Keti
Assunto: Geometria diferencial
Matemática
Data de publicação: 28-Set-2010
Referência: SOUZA, Anyelle Nogueira de. Imersões Taut de superfícies não compactas. 2007. 43 f. Dissertação (Mestrado em Matemática)-Universidade de Brasília, Brasília, 2007.
Resumo: O objetivo deste trabalho é provar, com base no artigo de Thomas E. Cecil, que se f: M(seta para direita) R3 é uma imersão taut de uma superfície não compacta e conexa, então f(M) é um hiperplano ou uma cíclide de Dupin completa. _____________________________________________________________________________ ABSTRACT
Our purpose is to prove, based on a paper of Thomas E. Cecil, that if f : M −! R3 is a taut immersion of a connected noncompact surface, then f(M) is either a hyperplane or a complete cyclide of Dupin.
Unidade Acadêmica: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
Informações adicionais: Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2007.
Texto parcialmente liberado pelo autor.
Programa de pós-graduação: Programa de Pós-Graduação em Matemática
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.