http://repositorio.unb.br/handle/10482/11091
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_AutomaticSpeakerRecognition.pdf | 499,63 kB | Adobe PDF | Visualizar/Abrir |
Título: | Automatic speaker recognition with Multi-resolution Gaussian Mixture models (MR-GMMs) |
Autor(es): | D’Almeida, Frederico Quadros Nascimento, Francisco Assis de Oliveira Berger, Pedro de Azevedo Silva, Lúcio Martins da |
Assunto: | Reconhecimento automático da voz Sistemas de processamento da fala Voz codificada - engenharia elétrica |
Data de publicação: | 2009 |
Editora: | Brazilian Association of High Technology Experts (ABEAT) |
Referência: | D'ALMEIDA, Frederico Quadros et al. Automatic speaker recognition with multi-resolution gaussian mixture models (mr-gmms). The International Journal of Forensic Computer Science v. 4, n. 1, p. 9-21, 2009. Disponível em: <http://www.ijofcs.org/abstract-v04n1-pp01.html>. Acesso em: 19 jun. 2012. |
Resumo: | Gaussian Mixture Models (GMMs) are the most widely used technique for voice modeling in automatic speaker recognition systems. In this paper, we introduce a variation of the traditional GMM approach that uses models with variable complexity (resolution). Termed Multi-resolution GMMs (MR-GMMs); this new approach yields more than a 50% reduction in the computational costs associated with proper speaker identification, as compared to the traditional GMM approach. We also explore the noise robustness of the new method by investigating MR-GMM performance under noisy audio conditions using a series of practical identification tests. |
Licença: | Disponível sob Licença Creative Commons 3.0, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação desta. |
DOI: | https://dx.doi.org/10.5769/J200901001 |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Este item está licenciada sob uma Licença Creative Commons