Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/14443
Files in This Item:
File Description SizeFormat 
2013_IgorAlcantaraBarroso.pdf1,49 MBAdobe PDFView/Open
Title: Superfícies de Weingarten especiais folheadas por círculos
Authors: Barroso, Igor de Alcântara
Orientador(es):: Carrión Riveros, Carlos Maber
Assunto:: Superfícies (Matemática)
Geometria euclidiana
Issue Date: 30-Oct-2013
Citation: BARROSO, Igor de Alcântara. Superfícies de Weingarten especiais folheadas por círculos. 2013. x, 51 f., il. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2013.
Abstract: Baseado no trabalho de Rafael López, estudamos quais são as superfícies do espaço euclidiano de dimensão 3, folheadas por círculos, que satisfazem uma condição de Weingarten do tipo aH+bK=c, onde a, b e c são constantes e, H e K são respetivamente a curvatura média e Gaussiana. Distinguiremos dois casos. Se os planos de folheação não são paralelos, somente subconjuntos de esfera verificam a condição de Weingarten. No caso contrário, se os planos de folheação são paralelos, as superfícies são parte de superfícies de revolução, ou superfícies mínimas de Riemann (H=0) ou cones generalizados (K=0). ______________________________________________________________________________ ABSTRACT
Based on an article by Rafel López , we study the surfaces in the Euclidean 3-space, foliated by circles that satisfy a Weingarten condition of the type aH+bK = c, where a, b and c are constants, and H, and K denote the mean and Gaussian curvature, respectively. In order to do that, we will distinguish two cases. First, when the foliation planes are not parallel, we shall conclude that such a surface must be a subset of a sphere. When the foliation planes are parallel, such surface is either part of a surface of revolution, one of the Riemann's minimal examples (i.e. H = 0), or a generalized cone (i.e. K = 0).
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
Description: Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2013.
metadata.dc.description.ppg: Programa de Pós-Graduação em Matemática
Licença:: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
Appears in Collections:Teses, dissertações e produtos pós-doutorado

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/14443/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.