http://repositorio.unb.br/handle/10482/22534
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2016_ClaudWagnerGonçalvesDiasJúnior.pdf | 2,92 MB | Adobe PDF | Visualizar/Abrir |
Título : | Os ideais de uma álgebra associativa gerados por comutadores e tópicos relacionados |
Autor : | Dias Júnior, Claud Wagner Gonçalves |
Orientador(es):: | Krassilnikov, Alexei |
Assunto:: | Álgebra comutativa Lie, Álgebra de |
Fecha de publicación : | 14-feb-2017 |
Data de defesa:: | 25-nov-2016 |
Citación : | DIAS JÚNIOR, Claud Wagner Gonçalves. Os ideais de uma álgebra associativa gerados por comutadores e tópicos relacionados. 2016. iii, 105 f. Tese (Doutorado em Matemática) — Universidade de Brasília, Brasília, 2016. |
Resumen : | Seja A uma álgebra associativa unitária sobre um anel associativo, comutativo e unitário k . Defina o comutador normado à esquerda [a1, a2,..., an] (ai ϵ A) indutivamente por [a1, a2]=a1a2-a2a1; [a1, a2,..., an]=[[a1, ...an-1]. Para n ≥2, seja T(n) (A) o ideal bilateral de A gerado pelos comutadores [a1, a2,..., an] (ai Є A). Seja ɛ={e1, e2,...} um conjunto gerador da álgebra A. A primeira parte desta tese diz respeito aos elementos que geram T(n) (A) como um ideal bilateral em A. O objetivo principal dessa parte consiste em mostrar que 1. Se 1/(6 ) ∈k, então T(n) (A) é gerado como ideal bilateral pelos comutadores [u1, ..., un] em que u_i ε∪ ε^2. Se 1/(3 ) ∈k , então T(n) (A) é gerado como ideal bilateral pelos comutadores [u1, ..., un] em que u_i ∈ε∪ ε^2∪ε^3. Aqui ε^(k ) (k≥1) denota o conjunto dos elementos de A da forma ei1 ei2...eik ∈ ε. Para isso, em um primeiro momento, será descrito um método recursivo que permite obter um conjunto de geradores para o ideal T (n) (A) (n≥3), como ideal bilateral em A , a partir dos geradores de T (n-2) (A) . A demonstração dos itens 1 e 2 acima é feita com base nesse resultado. Seja Z <X> a álgebra unitária associativa livre sobre Z no conjunto X= {x1,x2...}. Considere sua série central inferior como álgebra de Lie, isto é, a série dos ideais de Lie L(i)= Z <X> definido recursivamente por L^((1),)=z<X>,L^((i+1) )=[L^((i) ),Z<x>], e a correspondente álgebra de Lie graduada associada B: i≥1Bi=L(i)/L(i+1). A segunda parte desta tese diz respeito a série central inferior de X Z . É bem conhecido que a imagem J de T(3) (Z<X>) em B1 é central na álgebra de Lie B. Além disso, sabe-se que o isolador de J é maior que J . O objetivo principal da segunda parte desta tese é mostrar que o isolador de J está contido no centro de B. |
Abstract: | Let A be an associative unitary algebra over a commutative, associative and unitary ring K. De_ne a left-normed commutator [a1, a2,..., an] (ai ϵ A) inductively by [a1, a2]=a1a2-a2a1; [a1, a2,..., an]=[[a1, ...an-1]. For n ≥2, let T(n) (A) be the two-sided ideal in A generated by all commutators [a1, a2,..., an] (ai Є A). Let ɛ={e1, e2,...} be a generating set of algebra A. The _rst part of this thesis concerns with the elements that generateT(n) (A) as two-sided ideal in A. The main purpose of the _rst part of this thesis is to show that 1. If 1/(6 ) ∈k, then T(n) (A) is generated as two-sided ideal by the commutators [u1, ..., un] where u_i ε∪ ε^2. 2. If 1/(3 ) ∈k , then T(n) (A) is generated as two-sided ideal by the commutators [u1, ..., un] where u_i ∈ε∪ ε^2∪ε^3. Here ε^(k ) (k≥1) denotes the set of elements of the form ei1 ei2...eik ∈ ε. For this, at _rst, we describe a recursive method which allows us to obtain a set of generators for the ideal T (n) (A) (n≥3), as a two-sided ideal in A from generators of the ideal T (n-2) (A) . The proof of the items 1 and 2 above is based on this result. Let Z <X> be the free unitary associative algebra over a Z on the set X= {x1,x2...}. Consider its lower central series as a Lie algebra, i.e., the series of the Lie ideal L(i)= Z <X> de_ned recursively by L^((1),)=z<X>,L^((i+1) )=[L^((i) ),Z<x>], and the corresponding associated graded Lie algebra: i≥1Bi=L(i)/L(i+1). The second part of this thesis concerns with the lower central series of X Z . It is well-known that the image J de T(3) (Z<X>) in B1 is central in the Lie algebra B. Furthermore, it is known that the isolator of J is greater than I. The main purpose of the second part of this thesis is to show that the isolator of J is contained in the center of B. |
Descripción : | Tese (doutorado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2016. |
Licença:: | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. |
DOI: | http://dx.doi.org/10.26512/2016.11.T.22534 |
Aparece en las colecciones: | Teses, dissertações e produtos pós-doutorado |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.