Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/23378
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2017_SaraRaissaSilvaRodrigues.pdf2,1 MBAdobe PDFVisualizar/Abrir
Título : Sobre grupos finitos e profinitos quase Engel
Autor : Rodrigues, Sara Raissa Silva
Orientador(es):: Acciarri, Cristina
Assunto:: Grupos profinitos
Comutadores
Subgrupo de fitting
Grupo Engel
Fecha de publicación : 25-abr-2017
Citación : RODRIGUES, Sara Raissa Silva. Sobre grupos finitos e profinitos quase Engel. 2017. xiii, 92 f. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2017.
Resumen : Um grupo G é chamado um grupo Engel se para todos x e g em G a identidade [x, g, . . . , g] = 1 vale em G, onde g é repetido no comutador um número suficiente de vezes que depende de x e g. É bem conhecido que qualquer grupo localmente nilpotente é um grupo Engel. Mas, a recíproca não vale em geral. No entanto, em [26] J. S. Wilson e E. I. Zelmanov provaram que todo grupo profinito Engel ´e localmente nilpotente.Dados um elemento g em G e um inteiro positivo n, seja En(g) o subgrupo gerado por todos os comutadores [x, g, . . . , g] onde, x varia em G e g é repetido n vezes. Esta dissertação está baseada no artigo Almost Engel finite and profinite groups [13] de E. I. Khukhro e P. Shumyatsky. Mostramos que se G é um grupo profinito tal que, para todo g em G existe um inteiro positivo n = n(g) com a propriedade que En(g) é finito, então G possui um subgrupo normal finito N tal que G/N ´e localmente nilpotente. Um resultado da mesma natureza e de tipo quantitativo ´e provado para um grupo finito G, deduzindo informações sobre a ordem do subgrupo residual nilpotente γ(G) de G.
Abstract: A group G is called an Engel group if for every x and g in G the equation [x, g, . . . , g] = 1 holds in G, where g is repeated in the commutator sufficiently many times depending on x and g. It is well known that any locally nilpotent group is an Engel group, but the converse does not hold in general. However, in [26] J. S. Wilson and E. I. Zelmanov proved that any Engel profinite group is locally nilpotent. Given an element g in G and a positive integer n, let En(g) be the subgroup generated by all commutators [x, g, . . . , g] over x in G, where g is repeated n times. This master’s dissertation is based on the article Almost Engel finite and profinite groups [13] of E. I. Khukhro e P. Shumyatsky. It is shown that if G is a profinite group such that, for every g in G there is a positive integer n = n(g) such that En(g) is finite, then G has a finite normal subgroup N such that G/N is locally nilpotent. A similar result of quantitative nature holds for a finite group G, and it gives information about the order of the nilpotent residual subgroup ɣ(G) of G.
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
Descripción : Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2017.
metadata.dc.description.ppg: Programa de Pós-Graduação em Matemática
Licença:: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
DOI: http://dx.doi.org/10.26512/2017.02.D.23378
Aparece en las colecciones: Teses, dissertações e produtos pós-doutorado

Mostrar el registro Dublin Core completo del ítem " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/23378/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.