Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/23770
Files in This Item:
File Description SizeFormat 
ARTIGO_FosteredLeftAlleles.pdf604,48 kBAdobe PDFView/Open
Title: Fostered and left behind alleles in peanut : interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding
Authors: Fonceka, Daniel
Tossim, Hodo Abalo
Rivallan, Ronan
Vignes, Hélène
Faye, Issa
Ndoye, Ousmane
Moretzsohn, Márcio de Carvalho
Bertioli, David John
Glaszmann, Jean Christophe
Courtois, Brigitte
Rami, Jean François
Assunto:: Amendoim - cultivo
Diversidade genética
Produtividade agrícola
Adaptação (Biologia)
Issue Date: 17-Feb-2012
Publisher: BioMed Central
Citation: FONCEKA, Daniel et al. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biology, v. 12, Article 26, 17 fev. 2012. Disponível em: <https://bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-12-26>. Acesso em: 26 jun. 2017. doi https://bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-12-26.
Abstract: Background: Polyploidy can result in genetic bottlenecks, especially for species of monophyletic origin. Cultivated peanut is an allotetraploid harbouring limited genetic diversity, likely resulting from the combined effects of its single origin and domestication. Peanut wild relatives represent an important source of novel alleles that could be used to broaden the genetic basis of the cultigen. Using an advanced backcross population developed with a synthetic amphidiploid as donor of wild alleles, under two water regimes, we conducted a detailed QTL study for several traits involved in peanut productivity and adaptation as well as domestication. Results: A total of 95 QTLs were mapped in the two water treatments. About half of the QTL positive effects were associated with alleles of the wild parent and several QTLs involved in yield components were specific to the water-limited treatment. QTLs detected for the same trait mapped to non-homeologous genomic regions, suggesting differential control in subgenomes as a consequence of polyploidization. The noteworthy clustering of QTLs for traits involved in seed and pod size and in plant and pod morphology suggests, as in many crops, that a small number of loci have contributed to peanut domestication. Conclusion: In our study, we have identified QTLs that differentiated cultivated peanut from its wild relatives as well as wild alleles that contributed positive variation to several traits involved in peanut productivity and adaptation. These findings offer novel opportunities for peanut improvement using wild relatives.
Licença:: © 2012 Fonceka et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Fonte: https://bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-12-26. Acesso em: 26 jun. 2017.
DOI: https://dx.doi.org/10.1186/1471-2229-12-26
Appears in Collections:Artigos publicados em periódicos e afins

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/23770/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.