Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/32380
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2018_AdrianoCavalcanteBezerra.pdf627,44 kBAdobe PDFVisualizar/Abrir
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorWang, Qiaoling-
dc.contributor.authorBezerra, Adriano Cavalcante-
dc.date.accessioned2018-07-31T19:17:07Z-
dc.date.available2018-07-31T19:17:07Z-
dc.date.issued2018-07-31-
dc.date.submitted2018-03-16-
dc.identifier.citationBEZERRA, Adriano Cavalcante. Sobre teoremas de rigidez e estimativas de autovalores. 2018. 89 f. Tese (Doutorado em Matemática)—Universidade de Brasília, Brasília, 2018.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/32380-
dc.descriptionTese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2018.pt_BR
dc.description.abstractNeste trabalho, faremos um estudo de estimativas de autovalores para alguns operadores elípticos, buscando entender quais são suas relações com resultados de rigidez sobre a imersão a qual foram definidos. Na primeira parte do texto, estudaremos o operador drifting Laplaciano em variedades Riemannianas compactas com fronteira, com uma condição na curvatura de Ricci Bakry-Émery. Na segunda parte do texto, abrangendo os capítulos 3 e 4, buscaremos estabelecer condições sobre os operadores de estabilidade e super estabilidade de uma subvariedade mínima imersa no espaço hiperbólico, e sobre a norma da segunda forma fundamental,para concluir que a imersão e totalmente geodésica. Um resultado similar será obtido para uma superfície tipo-espaço com curvatura média constante, imersa no espaço de Lorentz L3 .pt_BR
dc.language.isoPortuguêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleSobre teoremas de rigidez e estimativas de autovalorespt_BR
dc.title.alternativeOn rigidity theorems and estimates of eigenvaluespt_BR
dc.typeTesept_BR
dc.subject.keywordEstimativas de autovalorespt_BR
dc.subject.keywordTeoremas de rigidezpt_BR
dc.subject.keywordCurvaturaspt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1In this work, we will make a study of eigenvalue estimates for some elliptical operators, trying to understand what their relationships with rigidity results on the immersion to which they were defined. In the first part of the text, we will study the Laplacian drifting operator in compact boundary Riemannian manifolds, with a condition in the Ricci Bakry- Emery curvature. In the second part of the text, covering chapters 3 and 4, we will seek to establish conditions on the stability and super stability operators of a minimal submanifolds immersed in the hyperbolic space, and on the norm Ld of the second fundamental form, for conclude that the immersion is totally geodesic. A similar result will be obtained for a space-like surface with constant mean curvature, immersed in the Lorentz space L3.pt_BR
Aparece en las colecciones: Teses, dissertações e produtos pós-doutorado

Mostrar el registro sencillo del ítem " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/32380/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.