http://repositorio.unb.br/handle/10482/33606
Fichier | Taille | Format | |
---|---|---|---|
ARTIGO_FourierAnalysisNonlinear.pdf | 2,03 MB | Adobe PDF | Voir/Ouvrir |
Titre: | Fourier analysis of nonlinear pendulum oscillations |
Auteur(s): | Singh, Inderpreet Arun, Palakkandy Lima, Fábio |
Assunto:: | Pêndulo Oscilações Fourier, Séries de |
Date de publication: | 2018 |
Editeur: | Sociedade Brasileira de Física |
Référence bibliographique: | SINGH, Inderpreet; ARUN, Palakkandy; LIMA, Fabio. Fourier analysis of nonlinear pendulum oscillations. Revista Brasileira de Ensino de Física, São Paulo, v. 40, n. 1, e1305, 2018. DOI: http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172018000100405&lng=en&nrm=iso. Acesso em: 11 mar. 2019. Epub July 20, 2017. |
Abstract: | Since the times of Galileo, it is well-known that a simple pendulum oscillates harmonically for any sufficiently small angular amplitude. Beyond this regime and in absence of dissipative forces, the pendulum period increases with amplitude and then it becomes a nonlinear system. Here in this work, we make use of Fourier series to investigate the transition from linear to nonlinear oscillations, which is done by comparing the Fourier coefficient of the fundamental mode (i.e., that for the small-angle regime) to those corresponding to higher frequencies, for angular amplitudes up to 9 0 ∘. Contrarily to some previous works, our results reveal that the pendulum oscillations are not highly anharmonic for all angular amplitudes. This kind of analysis for the pendulum motion is of great pedagogical interest for both theoretical and experimental classes on this theme. |
Licença:: | Licença Creative Commons (CC BY) |
DOI: | http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151 |
Collection(s) : | Artigos publicados em periódicos e afins |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.