Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/33879
Fichier(s) constituant ce document :
Fichier Description TailleFormat 
EVENTO_ ImmuneInspiredOptimization.pdf268,6 kBAdobe PDFVoir/Ouvrir
Titre: Immune-inspired optimization with autocorrentropy function for blind inversion of wiener systems
Auteur(s): Fernandez, Stephanie A.
Fantinato, Denis G.
Montalvão, Jugurta
Attux, Romis
Silva, Daniel Guerreiro e
Assunto:: Sistemas não-lineares
Framework
Date de publication: 2018
Référence bibliographique: FERNANDEZ, Stephanie A. et al. Immune-inspired optimization with autocorrentropy function for blind inversion of wiener systems. In: IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - WCCI 2018, 2018, Rio Janeiro.
Abstract: Blind inversion of nonlinear systems is a complex task that requires some sort of prior information about the source e.g. whether it is composed of independent samples or, particularly in this work, a dependence “signature” which is assumed to be known via the autocorrentropy function. Furthermore, it involves the solution of a nonlinear, multimodal optimization problem to determine the parameters of the inverse model. Thus, we propose a blind method for Wiener systems inversion, which is composed of a correntropy-based criterion in association to the well-known CLONALG immune-inspired optimization metaheuristic. The empirical results validate the methodology for continuous and discrete signals.
metadata.dc.description.unidade: Faculdade de Tecnologia (FT)
Departamento de Engenharia Elétrica (FT ENE)
Licença:: Autorização concedida ao Repositório Institucional da Universidade de Brasília (RIUnB) pelo Prof. Daniel Guerreiro e Silva, em 29 de janeiro de 2019, para disponibilizar o trabalho, gratuitamente, para fins de leitura, impressão e/ou download, a título de divulgação da obra.
Collection(s) :Trabalhos apresentados em evento

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/33879/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.