Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/36305
Fichier(s) constituant ce document :
Fichier TailleFormat 
ARTIGO_AlgorithmStandardStochastic.pdf267,43 kBAdobe PDFVoir/Ouvrir
Titre: The EM algorithm for standard stochastic frontier models
Auteur(s): Andrade, Bernardo Borba de
Souza, Geraldo da Silva e
metadata.dc.identifier.orcid: http://orcid.org/0000-0003-4688-9733
Assunto:: Eficiência
Aceleração EM
Probabilidades
Algoritmos
Date de publication: 2019
Editeur: Sociedade Brasileira de Pesquisa Operacional
Référence bibliographique: ANDRADE, Bernardo B. de; SOUZA, Geraldo S. The EM algorithm for standard stochastic frontier models. Pesquisa Operacional, v. 39, n. 3, p. 361-378, 2019. DOI: https://doi.org/10.1590/0101-7438.2019.039.03.0361. Disponível em: http://scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000300361. Acesso em: 23 jan. 2020.
Abstract: The Expectation-Maximization (EM) algorithm is developed for the stochastic frontier models most used in practice with cross-section data. The resulting algorithms can be easily programmed into a computer and are shown to be worthy alternatives to general-purpose optimization routines currently used. The algorithms for the half normal and the exponential models have closed-form expressions whereas those for the truncated normal and gamma models will require the numerical solution of a nonlinear equation. Implementations of the EM algorithm either as a stand-alone routine or in accelerated form and also combined with Newton-like methods are discussed. We provide illustrations, along with R tools, for cost and production frontiers.
Licença:: (CC BY) - © 2019 Brazilian Operations Research Society
DOI: https://doi.org/10.1590/0101-7438.2019.039.03.0361
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/36305/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.