http://repositorio.unb.br/handle/10482/39593
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Bastos Júnior, Raimundo de Araújo | - |
dc.contributor.author | Dantas, Alex Carrazedo | - |
dc.contributor.author | Melo, Emerson Ferreira de | - |
dc.date.accessioned | 2020-10-23T16:02:01Z | - |
dc.date.available | 2020-10-23T16:02:01Z | - |
dc.date.issued | 2020-03-17 | - |
dc.identifier.citation | BASTOS, Raimundo; DANTAS, Alex C.; MELO, Emerson de. Soluble groups with few orbits under automorphisms. Geometriae Dedicata, v. 209, p. 119-123, 2020. DOI: https://doi.org/10.1007/s10711-020-00525-7. Disponível em: https://link.springer.com/article/10.1007/s10711-020-00525-7. | pt_BR |
dc.identifier.uri | https://repositorio.unb.br/handle/10482/39593 | - |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Springer | pt_BR |
dc.rights | Acesso Restrito | pt_BR |
dc.title | Soluble groups with few orbits under automorphisms | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Extensões | pt_BR |
dc.subject.keyword | Automorfismos | pt_BR |
dc.subject.keyword | Grupos solúveis | pt_BR |
dc.identifier.doi | https://doi.org/10.1007/s10711-020-00525-7 | pt_BR |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s10711-020-00525-7 | - |
dc.description.abstract1 | Let G be a group. The orbits of the natural action of Aut(G) on G are called “automorphism orbits” of G, and the number of automorphism orbits of G is denoted by ω(G). We prove that if G is a soluble group of finite rank such that ω(G)<∞, then G contains a torsion-free radicable nilpotent characteristic subgroup K such that G=K⋊H, where H is a finite group. Moreover, we classify the mixed order soluble groups of finite rank such that ω(G)=3. | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0002-5733-519X | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.