http://repositorio.unb.br/handle/10482/39593
Título : | Soluble groups with few orbits under automorphisms |
Autor : | Bastos Júnior, Raimundo de Araújo Dantas, Alex Carrazedo Melo, Emerson Ferreira de |
metadata.dc.identifier.orcid: | https://orcid.org/0000-0002-5733-519X |
Assunto:: | Extensões Automorfismos Grupos solúveis |
Fecha de publicación : | 17-mar-2020 |
Editorial : | Springer |
Citación : | BASTOS, Raimundo; DANTAS, Alex C.; MELO, Emerson de. Soluble groups with few orbits under automorphisms. Geometriae Dedicata, v. 209, p. 119-123, 2020. DOI: https://doi.org/10.1007/s10711-020-00525-7. Disponível em: https://link.springer.com/article/10.1007/s10711-020-00525-7. |
Abstract: | Let G be a group. The orbits of the natural action of Aut(G) on G are called “automorphism orbits” of G, and the number of automorphism orbits of G is denoted by ω(G). We prove that if G is a soluble group of finite rank such that ω(G)<∞, then G contains a torsion-free radicable nilpotent characteristic subgroup K such that G=K⋊H, where H is a finite group. Moreover, we classify the mixed order soluble groups of finite rank such that ω(G)=3. |
DOI: | https://doi.org/10.1007/s10711-020-00525-7 |
metadata.dc.relation.publisherversion: | https://link.springer.com/article/10.1007/s10711-020-00525-7 |
Aparece en las colecciones: | Artigos publicados em periódicos e afins |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.