Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/41188
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : A dynamical system approach to a class of radial weighted fully nonlinear equations
Autor : Maia, Liliane de Almeida
Nornberg, Gabrielle
Pacella, Filomena
metadata.dc.identifier.orcid: https://orcid.org/0000-0002-6163-1899
https://orcid.org/0000-0002-0395-0250
https://orcid.org/0000-0002-1269-6530
Assunto:: Expoentes críticos
Sistemas dinâmicos
Equações diferenciais não-lineares
Fecha de publicación : dic-2020
Editorial : Taylor & Francis
Citación : MAIA, Liliane; NORRNBERG, Gabrielle; PACELLA, Filomena. A dynamical system approach to a class of radial weighted fully nonlinear equations. Communications in Partial Differential Equations, v. 46, n. 4, p. 573-610, 2020. DOI: https://doi.org/10.1080/03605302.2020.1849281.
Abstract: In this paper we study existence, nonexistence and classification of radial positive solutions of some weighted fully nonlinear equations involving Pucci extremal operators. Our results are entirely based on the analysis of the dynamics induced by an autonomous quadratic system which is obtained after a suitable transformation. This method allows to treat both regular and singular solutions in a unified way, without using energy arguments. In particular we recover known results on regular solutions for the fully nonlinear non weighted problem by alternative proofs. We also slightly improve the classification of the solutions for the extremal operator M−.
DOI: https://doi.org/10.1080/03605302.2020.1849281
metadata.dc.relation.publisherversion: https://www.tandfonline.com/doi/abs/10.1080/03605302.2020.1849281
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro Dublin Core completo del ítem " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/41188/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.