Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/42696
Files in This Item:
File Description SizeFormat 
2021_LuizaAguiarHansen.pdf3,79 MBAdobe PDFView/Open
Title: Análise visual de dados educacionais : um estudo de caso das disciplinas introdutórias de programação da UnB
Authors: Hansen, Luiza Aguiar
Orientador(es):: Holanda, Maristela Terto de
Coorientador(es):: Borges, Vinícius Ruela Pereira
Assunto:: Visualização de dados
Disciplinas introdutórias
Universidade de Brasília
Issue Date: 7-Jan-2022
Citation: HANSEN, Luiza Aguiar. Análise visual de dados educacionais: um estudo de caso das disciplinas introdutórias de programação da UnB. 2021. 94 f., il. Dissertação (Mestrado em Informática) — Universidade de Brasília, Brasília, 2021.
Abstract: As técnicas de visualização auxiliam na análise e na compreensão de conjuntos de dados, de forma a evidenciar características e padrões de informações. Na literatura, a análise de dados educacionais é empregada em tarefas como predição de performance e identificação de perfis dos estudantes e monitoramento de sistemas educacionais com o objetivo de contribuir para a melhoria da qualidade de ensino. Nas disciplinas introdutórias de computação, evidencia-se o alto número de reprovação e abandono de alunos, o que caracteriza um cenário apropriado para estudo e investigação utilizando técnicas de análise e visualização de dados. Este trabalho estuda e avalia os algoritmos de visualização para que professores e gestores educacionais possam tomar decisões. Os algoritmos foram aplicados em um estudo de caso de três disciplinas introdutórias de computação da UnB, levando em consideração fatores sociais e acadêmicos dos alunos. As visualizações foram avaliadas a partir de um questionário aplicado a professores e gestores educacionais. A partir do resultado, observou-se que os questionados se sentiram mais seguros ao utilizar algoritmos já conhecidos, como o gráfico de pizza e o gráfico de barras. Dentre os selecionados, o diagrama de sankey, o treemap e o gráfico de violino eram os menos conhecidos pelos questionados. Ademais, o gráfico de barras foi o algoritmo em que as informações foram identificadas de forma mais rápida e correta. Por fim, de forma a extrair conhecimento das visualizações selecionadas, foram utilizados os dados dos alunos referentes ao gênero, à forma de entrada no curso e à disciplina cursada.
Abstract: Data visualization techniques supports analysis and understanding of datasets, which emphasize the observation of characteristics and patterns. In the literature, the analysis of educational data is used in tasks such as performance prediction and identification of student profiles, as also monitoring educational systems in order to improve the quality of education. In introductory computing subjects, there is a high number of students who fail and dropout the courses, which makes it an appropriate scenario for using data analysis and visualization techniques. This paper studies visualization algorithms in order to help teachers and educational managers to make decisions that support the learning. The algorithms were applied in a case study of three introductory computing subjects at UnB and were evaluated through a questionnaire applied to teachers and educational managers. The results show that the respondents felt more secure when using familiar algorithms, such as pie chart and bar chart. Among the selected visualization, sankey chart, treemap, and violin chart were the least known by the respondents. Furthermore, the bar chart was the algorithm where the information was identified quickly and correctly most of the time. Finally, in order to extract knowledge from the selected visualizations, student data regarding gender, entrance form to university and subject studied were analysed.
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Ciência da Computação (IE CIC)
Description: Dissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2021.
metadata.dc.description.ppg: Programa de Pós-Graduação em Informática
Licença:: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
Appears in Collections:Teses, dissertações e produtos pós-doutorado

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/42696/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.