Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/43604
Files in This Item:
There are no files associated with this item.
Title: Reparameterized extended Maxwell regression: Properties, estimation and application
Authors: Prataviera, Fábio
Vila Gabriel, Roberto
Cancho, Vicente G.
Ortega, Edwin M. M.
Cordeiro, Gauss M.
metadata.dc.identifier.orcid: https://orcid.org/ 0000-0001-8190-1086
https://orcid.org/ 0000-0003-1073-0114
https://orcid.org/ 0000-0003-3999-7402
https://orcid.org/ 0000-0002-3052-6551
Assunto:: Inferência bayesiana
Dados experimentais
inferência de probabilidade
Mediana
Modelo de regressão
Issue Date: 24-Feb-2022
Publisher: Taylor & Francis
Citation: PRATAVIERA, Fábio et al. Reparameterized extended Maxwell regression: properties, estimation and application. Communications in Statistics - Theory and Methods, 2022. DOI: https://doi.org/10.1080/03610926.2022.2042561.
Abstract: We propose a reparameterized regression for the median of an extended Maxwell distribution that can be used when the response variable has a positive support. We obtain some structural properties of the distribution. The parameter estimates are obtained by maximum likelihood and Bayesian methods. Some influence measures and quantile residuals are defined. Several Monte Carlo simulations are reported for inference purposes. The new regression is applied to an experimental data set.
DOI: https://doi.org/10.1080/03610926.2022.2042561
metadata.dc.relation.publisherversion: https://www.tandfonline.com/doi/abs/10.1080/03610926.2022.2042561
Appears in Collections:Artigos publicados em periódicos e afins

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/43604/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.