http://repositorio.unb.br/handle/10482/43678
Title: | Hyperbolic 3-manifold groups are subgroup into conjugacy separable |
Authors: | Chagas, S. C. Zalesskii, Pavel |
Assunto:: | Variedades (Matemática) Topologia profinita Grupos finitos |
Issue Date: | 2022 |
Publisher: | Taylor & Francis |
Citation: | CHAGAS, S. C.; ZALESSKII, P. A. Hyperbolic 3-manifold groups are subgroup into conjugacy separable. Communications in Algebra, v. 50, n. 5, p. 2264-2268, 2022. DOI: 10.1080/00927872.2021.2005077. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/00927872.2021.2005077?journalCode=lagb20. Acesso em: 10 maio 2022. |
Abstract: | A group G is subgroup conjugacy distinguished (resp. subgroup into conjugacy separable) if whenever an element y (resp. a finitely generated subgroup K) is not conjugate to an element (to a subgroup) of a finitely generated subgroup H of G there exists a finite quotient G/N of G where yN (resp. KN/N) is not conjugate to an element (to a subgroup) of HN/N. We prove that the fundamental group of a hyperbolic 3-manifold is subgroup conjugacy distinguished and subgroup into conjugacy separable. |
DOI: | https://doi.org/10.1080/00927872.2021.2005077 |
metadata.dc.relation.publisherversion: | https://www.tandfonline.com/doi/abs/10.1080/00927872.2021.2005077?journalCode=lagb20 |
Appears in Collections: | Artigos publicados em periódicos e afins |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.