http://repositorio.unb.br/handle/10482/44618
Title: | A parameterized quasilinear Schrödinger equation with indefinite potentials |
Authors: | Giacomoni, Jacques Santos, Carlos Alberto Yang, Minbo Zhou, Jiazheng |
metadata.dc.contributor.email: | mailto:jacques.giacomoni@univ-pau.fr mailto:csantos@unb.br mailto:mbyang@zjnu.edu.cn mailto:jiazzheng@gmail.com |
Assunto:: | Schrödinger, Equação de Potencial indefinido Grupos críticos |
Issue Date: | 2020 |
Citation: | GIACOMONI, Jacques et al. A parameterized quasilinear Schrödinger equation with indefinite potentials. Nonlinear Analysis, v. 192, art. 111703, 2020. DOI 10.1016/j.na.2019.111703. Disponível em: https://www.sciencedirect.com/science/article/pii/S0362546X19303566?via%3Dihub. Acesso em: 22 ago.2022. |
Abstract: | In this paper we consider the existence of solutions for the quasilinear Schrödinger equation −∆u − k∆[(1 + u2) 1/2] u 2(1 + u2)1/2 + V (x)u = g(u) in H1 (RN ) ∩ L∞ loc(RN ), where N ≥ 3, V is a continuous potential allowed to be indefinite, g is a subcritical growth function, and k is a real parameter. By using local linking arguments and computing the critical groups of the energy functional, we obtain the existence of nontrivial solution for the equation. |
DOI: | https://doi.org/10.1016/j.na.2019.111703 |
Appears in Collections: | Artigos publicados em periódicos e afins |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.