Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/44618
Files in This Item:
There are no files associated with this item.
Title: A parameterized quasilinear Schrödinger equation with indefinite potentials
Authors: Giacomoni, Jacques
Santos, Carlos Alberto
Yang, Minbo
Zhou, Jiazheng
metadata.dc.contributor.email: mailto:jacques.giacomoni@univ-pau.fr
mailto:csantos@unb.br
mailto:mbyang@zjnu.edu.cn
mailto:jiazzheng@gmail.com
Assunto:: Schrödinger, Equação de
Potencial indefinido
Grupos críticos
Issue Date: 2020
Citation: GIACOMONI, Jacques et al. A parameterized quasilinear Schrödinger equation with indefinite potentials. Nonlinear Analysis, v. 192, art. 111703, 2020. DOI 10.1016/j.na.2019.111703. Disponível em: https://www.sciencedirect.com/science/article/pii/S0362546X19303566?via%3Dihub. Acesso em: 22 ago.2022.
Abstract: In this paper we consider the existence of solutions for the quasilinear Schrödinger equation −∆u − k∆[(1 + u2) 1/2] u 2(1 + u2)1/2 + V (x)u = g(u) in H1 (RN ) ∩ L∞ loc(RN ), where N ≥ 3, V is a continuous potential allowed to be indefinite, g is a subcritical growth function, and k is a real parameter. By using local linking arguments and computing the critical groups of the energy functional, we obtain the existence of nontrivial solution for the equation.
DOI: https://doi.org/10.1016/j.na.2019.111703
Appears in Collections:Artigos publicados em periódicos e afins

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/44618/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.