Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/44909
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : Centralizers of commutators in finite groups
Autor : Detomi, Eloisa
Morigi, Marta
Shumyatsky, Pavel
metadata.dc.contributor.email: mailto:eloisa.detomi@unipd.it
mailto:marta.morigi@unibo.it
mailto:pavel@unb.br
Assunto:: Comutadores
Centralizadores
Conjugação
Fecha de publicación : 2022
Editorial : Elsevier
Citación : DETOMI, Eloisa; MORIGI, Marta; SHUMYATSKY, Pavel. Centralizers of commutators in finite groups. Journal of Algebra, v. 612, n. 15, p. 475-486, dez. 2022. DOI 10.1016/j.jalgebra.2022.09.005. Disponível em: https://www.sciencedirect.com/science/article/pii/S0021869322004318?via%3Dihub. Acesso em: 26 set. 2022.
Abstract: Let G be a finite group. A coprime commutator in G is any element that can be written as a commutator [x, y] for suitable x, y ∈ G such that π(x) ∩ π(y) = ∅. Here π(g) denotes the set of prime divisors of the order of the element g ∈ G. An anticoprime commutator is an element that can be written as a commutator [x, y], where π(x) = π(y). The main results of the paper are as follows. If |xG| ≤ n whenever x is a coprime commutator, then G has a nilpotent subgroup of n-bounded index. If |xG| ≤ n for every anti-coprime commutator x ∈ G, then G has a subgroup H of nilpotency class at most 4 such that [G : H] and |γ4(H)| are both n-bounded. We also consider finite groups in which the centralizers of coprime, or anti-coprime, commutators are of bounded order.
DOI: https://doi.org/10.1016/j.jalgebra.2022.09.005
metadata.dc.relation.publisherversion: https://www.sciencedirect.com/science/article/pii/S0021869322004318?via%3Dihub
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro Dublin Core completo del ítem " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/44909/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.