http://repositorio.unb.br/handle/10482/44990
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2022_FabioAugustoFujita.pdf | 2,56 MB | Adobe PDF | Visualizar/Abrir |
Título : | Projeção da inflação de bens industriais brasileira usando métodos de machine learning |
Autor : | Fujita, Fabio Augusto |
Orientador(es):: | Cajueiro, Daniel Oliveira |
Assunto:: | Aprendizagem de máquina Inflação Bens industriais |
Fecha de publicación : | 4-oct-2022 |
Data de defesa:: | 10-ago-2022 |
Citación : | FUJITA, Fabio Augusto. Projeção da inflação de bens industriais brasileira usando métodos de machine learning. 2022. 53 f., il. Dissertação (Mestrado em Economia) — Universidade de Brasília, Brasília, 2022. |
Resumen : | Há um grande interesse em melhorar as projeções de inflação para o planejamento e a tomada de decisão pelas famílias, setor privado e formuladores de políticas. No entanto, superar até mesmo modelos univariados pode ser uma tarefa difícil. Usamos métodos de machine learning e um grande conjunto de dados para prever a inflação de bens industriais no IPCA brasileiro para horizontes até t + 12, considerando dados entre janeiro de 2007 e agosto de 2021. Avaliamos as previsões de quatro métodos lineares regularizados e dois métodos não lineares baseados em árvores, considerando random walk e modelos autorregressivos como benchmarks, utilizando uma metodologia pseudo out-of-sample. Também avaliamos os resultados sem dados de desemprego como regressores, levando em consideração as discussões em torno da relevância dos dados de desemprego na previsão de inflação. Os métodos não lineares superam os métodos lineares regularizados e os benchmarks. Também encontramos evidências de que os mecanismos de seleção de variáveis dos métodos random forest e gradient tree boosting têm um desempenho melhor do que os de modelos lineares regularizados para prever a inflação de bens industriais. As random forests se destacam em termos de erro de previsão e como o método que melhor controla o trade-off viés-variância. O método também exibe um desempenho mais uniforme do que o gradient tree boosting ao longo dos horizontes de previsão. |
Abstract: | There is great interest in improving inflation forecasts for better planning and decision making by households, the private sector, and policy makers. However, even outperforming univariate models can be a difficult task. We use machine learning methods and a large data set to forecast industrial goods inflation on Brazilian IPCA for horizons up to t + 12, considering the time span between January 2007 and August 2021. We assess the forecasts of four regularized linear methods and two nonlinear tree based methods, with random walk and AR models as benchmarks, in a pseudo out-of-sample framework. We also assess the results without unemployment data as regressors, considering the discussions around the relevance of unemployment data on inflation forecasting. The nonlinear methods outperform the regularized linear methods and the benchmarks. We also find evidence that the variable selection mechanisms of random forest and gradient tree boosting perform better than on linear regularized models to forecast industrial goods inflation. Random forest stands out in terms of forecasting error and as the method that better controls the bias-variance trade-off. It also displays a more uniform performance than gradient tree boosting across the forecasting horizons. |
metadata.dc.description.unidade: | Faculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas (FACE) Departamento de Economia (FACE ECO) |
Descripción : | Dissertação (mestrado) — Universidade de Brasília, Faculdade de Economia, Administração e Contabilidade, Departamento de Economia, Programa de Pós-Graduação em Ciências Econômicas, 2022. |
metadata.dc.description.ppg: | Programa de Pós-Graduação em Economia |
Licença:: | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. |
Aparece en las colecciones: | Teses, dissertações e produtos pós-doutorado |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.