Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/45046
Files in This Item:
There are no files associated with this item.
Title: Ground states of elliptic problems over cones
Authors: Figueiredo, Giovany de Jesus Malcher
Quoirin, Humberto Ramos
Silva, Kaye
metadata.dc.contributor.email: mailto:giovany_ufpa@yahoo.com.br
mailto:huiguo_math@163.com
Assunto:: Schrödinger, Equação de
Equações diferenciais
Sistema diferencial elíptico
Issue Date: 3-Aug-2021
Publisher: Springer
Citation: FIGUEIREDO, Giovany M.; QUOIRIN, Humberto Ramos; SILVA, Kaye. Ground states of elliptic problems over cones. Calculus of Variations and Partial Differential Equations, v. 60, art. 189, 2021. DOI 10.1007/s00526-021-02052-z. Disponível em: https://link.springer.com/article/10.1007/s00526-021-02052-z. Acesso em: 07 out. 2022.
Abstract: Given a reflexive Banach space X, we consider a class of functionals Φ∈C1(X,R) that do not behave in a uniform way, in the sense that the map t↦Φ(tu), t>0, does not have a uniform geometry with respect to u∈X. Assuming instead such a uniform behavior within an open cone Y⊂X∖{0}, we show that Φ has a ground state relative to Y. Some further conditions ensure that this relative ground state is the (absolute) ground state of Φ. Several applications to elliptic equations and systems are given.
DOI: https://doi.org/10.1007/s00526-021-02052-z
metadata.dc.relation.publisherversion: https://link.springer.com/article/10.1007/s00526-021-02052-z
Appears in Collections:Artigos publicados em periódicos e afins

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/45046/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.