Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/45051
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Titre: Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient
Auteur(s): Figueiredo, Giovany de Jesus Malcher
Madeira, Gustavo F.
metadata.dc.contributor.email: mailto:giovany@unb.br
mailto:gfmadeira@ufscar.br
Assunto:: Equação elíptica
Operador não homogêneo
Solução máxima e mínima
Date de publication: 23-nov-2020
Editeur: Science Direct
Référence bibliographique: FIGUEIREDO, Giovany M.; MADEIRA, Gustavo F. Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient. Journal of Differential Equations, v. 274, p. 857-875, fev. 2021, DOI 10.1016/j.jde.2020.10.033. Disponível em: https://www.sciencedirect.com/science/article/pii/S0022039620305921. Acesso em: 19 out. 2022.
Abstract: We are concerned with positive maximal and minimal solutions for non-homogeneous elliptic equations of the form − div(a(|∇u|p)|∇u|p−2∇u) = f (x, u, ∇u) in , supplied with Dirichlet boundary conditions. First we localize maximal and minimal solutions between not necessarily bounded sub-super solutions. Then using a uniform gradient estimate, which seems of independent interest, we show the existence of positive maximal and minimal solutions in some situations. More precisely, we obtain positive maximal and minimal solution to some classes of non-homogeneous equations depending on the gradient which may be perturbed by unbounded, singular or logistic sources.
DOI: https://doi.org/10.1016/j.jde.2020.10.033
metadata.dc.relation.isbasedon: https://www.sciencedirect.com/science/article/pii/S0022039620305921
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/45051/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.