http://repositorio.unb.br/handle/10482/45051
Título: | Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient |
Autor(es): | Figueiredo, Giovany de Jesus Malcher Madeira, Gustavo F. |
E-mail do autor: | mailto:giovany@unb.br mailto:gfmadeira@ufscar.br |
Assunto: | Equação elíptica Operador não homogêneo Solução máxima e mínima |
Data de publicação: | 23-Nov-2020 |
Editora: | Science Direct |
Referência: | FIGUEIREDO, Giovany M.; MADEIRA, Gustavo F. Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient. Journal of Differential Equations, v. 274, p. 857-875, fev. 2021, DOI 10.1016/j.jde.2020.10.033. Disponível em: https://www.sciencedirect.com/science/article/pii/S0022039620305921. Acesso em: 19 out. 2022. |
Abstract: | We are concerned with positive maximal and minimal solutions for non-homogeneous elliptic equations of the form − div(a(|∇u|p)|∇u|p−2∇u) = f (x, u, ∇u) in , supplied with Dirichlet boundary conditions. First we localize maximal and minimal solutions between not necessarily bounded sub-super solutions. Then using a uniform gradient estimate, which seems of independent interest, we show the existence of positive maximal and minimal solutions in some situations. More precisely, we obtain positive maximal and minimal solution to some classes of non-homogeneous equations depending on the gradient which may be perturbed by unbounded, singular or logistic sources. |
DOI: | https://doi.org/10.1016/j.jde.2020.10.033 |
Publicação associada: | https://www.sciencedirect.com/science/article/pii/S0022039620305921 |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.