Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/45059
Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ARTIGO_PositiveSolutionsPrescribed.pdf3,38 MBAdobe PDFVoir/Ouvrir
Titre: Positive solutions of the prescribed mean curvature equation with exponential critical growth
Auteur(s): Figueiredo, Giovany de Jesus Malcher
Rădulescu, Vicenţiu D.
metadata.dc.identifier.orcid: https://orcid.org/0000-0003-1697-1592
https://orcid.org/0000-0003-4615-5537
Assunto:: Curvatura média constante
Crescimento exponencial crítico
Lewy–Stampacchia, Estimativa de
Date de publication: 1-mar-2021
Editeur: Springer Nature
Référence bibliographique: FIGUEIREDO, Giovany M.; RĂDULESCU, Vicenţiu D. Positive solutions of the prescribed mean curvature equation with exponential critical growth. Annali di Matematica, v. 200, n. 5, p. 2213–2233, out. 2021. DOI 10.1007/s10231-021-01077-7. Disponível em: https://link.springer.com/article/10.1007/s10231-021-01077-7. Acesso em: 21 out. 2022.
Abstract: In this paper, we are concerned with the problem − div ⎛⎝⎜∇u1+|∇u|2−−−−−−−−√⎞⎠⎟=f(u) in Ω, u=0 on ∂Ω, where Ω⊂R2 is a bounded smooth domain and f:R→R is a superlinear continuous function with critical exponential growth. We first make a truncation on the prescribed mean curvature operator and obtain an auxiliary problem. Next, we show the existence of positive solutions of this auxiliary problem by using the Nehari manifold method. Finally, we conclude that the solution of the auxiliary problem is a solution of the original problem by using the Moser iteration method and Stampacchia’s estimates.
Licença:: Annali di Matematica Pura ed Applicata (1923 -) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited. Fonte: https://www.springer.com/journal/10231/how-to-publish-with-us#Fees%20and%20Funding. Acesso em: 21 out. 2022.
DOI: https://doi.org/10.1007/s10231-021-01077-7
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/45059/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.