http://repositorio.unb.br/handle/10482/46628
Title: | Hartree-Fock type systems : existence of ground states and asymptotic behavior |
Authors: | D’Avenia, Pietro Maia, Liliane de Almeida Siciliano, Gaetano |
metadata.dc.contributor.email: | mailto:pietro.davenia@poliba.it mailto:lilimaia@unb.br mailto:sicilian@ime.usp.br |
metadata.dc.identifier.orcid: | https://orcid.org/0000-0002-6163-1899 |
metadata.dc.contributor.affiliation: | Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari Departamento de Matemática, Universidade de Brasília Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo |
Assunto:: | Método Hartree-Fock Schrödinger, Equação de |
Issue Date: | 22-Jul-2022 |
Publisher: | Elsevier |
Citation: | D'AVENIA, Pietro; MAIA, Liliane; SICILIANO, Gaetano. Hartree-Fock type systems: existence of ground states and asymptotic behavior. Journal of Differential Equations, v. 335, p. 580-614, out. 2022. DOI https://doi.org/10.1016/j.jde.2022.07.012. Disponível em: https://www.sciencedirect.com/science/article/pii/S0022039622004235?via%3Dihub. Acesso em: 05 out. 2023. |
Abstract: | In this paper we consider a Hartree-Fock type system made by two Schrödinger equations in presence of a Coulomb interacting term and a cooperative pure power and subcritical nonlinearity, driven by a suitable parameter . We show the existence of semitrivial and vectorial ground states solutions depending on the parameters involved. The asymptotic behavior with respect to the parameter β of these solutions is also studied. |
metadata.dc.description.unidade: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
DOI: | https://doi.org/10.1016/j.jde.2022.07.012 |
metadata.dc.relation.publisherversion: | https://www.sciencedirect.com/science/article/pii/S0022039622004235?via%3Dihub |
Agência financiadora: | UnB - Edital DPI/DPG n. 02/2022 |
Appears in Collections: | Artigos publicados em periódicos e afins |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.