http://repositorio.unb.br/handle/10482/46642
Title: | Asymptotic behaviour of positive solutions of semilinear elliptic problems with increasing powers |
Authors: | Boccardo, Lucio Maia, Liliane de Almeida Pellacci, Benedetta |
metadata.dc.contributor.email: | mailto:boccardo@uniroma1.it mailto:lilimaia@unb.br mailto:benedetta.pellacci@unicampania.it |
metadata.dc.identifier.orcid: | https://orcid.org/0000-0002-6163-1899 https://orcid.org/0000-0002-1254-1811 |
metadata.dc.contributor.affiliation: | Istituto Lombardo and Sapienza Università di Roma Departamento de Matemática, Universidade de Brasília Dipartimento di Matematica e Fisica, Università della Campania ‘Luigi Vanvitelli’ |
Assunto:: | Soluções positivas Equações semilineares |
Issue Date: | 28-Sep-2021 |
Publisher: | Cambridge University Press |
Citation: | BOCCARDO, Lucio; MAIA, Liliane; PELLACCI, Benedetta. Asymptotic behaviour of positive solutions of semilinear elliptic problems with increasing powers. Proceedings of the Royal Society of Edinburgh, v. 152, n. 5. 2021. DOI https://doi.org/10.1017/prm.2021.54. Disponível em: https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/abs/asymptotic-behaviour-of-positive-solutions-of-semilinear-elliptic-problems-with-increasing-powers/CEBF477D0A8AEE329C646549420DFEAD. Acesso em: 09 out. 2023. |
Abstract: | We prove existence results of two solutions of the problem L(u) + um−1 = λup−1 in Ω, u > 0 in Ω, u = 0 on ∂Ω, where L(v) = −div(M(x)∇v) is a linear operator, p ∈ (2, 2∗] and λ and m sufficiently large. Then their asymptotical limit as m → +∞ is investigated showing different behaviours. |
metadata.dc.description.unidade: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
DOI: | https://doi.org/10.1017/prm.2021.54 |
metadata.dc.relation.publisherversion: | https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/abs/asymptotic-behaviour-of-positive-solutions-of-semilinear-elliptic-problems-with-increasing-powers/CEBF477D0A8AEE329C646549420DFEAD |
Agência financiadora: | UnB - Edital DPI/DPG n. 02/2022 |
Appears in Collections: | Artigos publicados em periódicos e afins |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.