http://repositorio.unb.br/handle/10482/46712
Title: | Synthesis and characterization of α-Fe 2O 3 nanoparticles showing potential applications for sensing quaternary ammonium vapor at room temperature |
Authors: | Quispe, Luis T. Mamani, L. G. Luza Baldarrago Alcantara, Apuniano Aman León Félix, Lizbet Goya, Gerardo F. Fuentes Garcia, Jesus Antonio Pacheco Salazar, David G. Huamaní Coaquira, José Antonio |
metadata.dc.identifier.orcid: | https://orcid.org/0000-0003-0824-4184 https://orcid.org/0000-0003-4946-2962 https://orcid.org/0000-0001-9392-4592 https://orcid.org/0000-0003-4952-3702 https://orcid.org/0000-0003-4952-3702 https://orcid.org/0000-0003-4685-2244 |
metadata.dc.contributor.affiliation: | Universidad Nacional de San Agustín de Arequipa, Escuela Profesional de Física, Laboratorio de Películas Delgadas Universidad Nacional de San Agustín de Arequipa, Escuela Profesional de Física, Laboratorio de Películas Delgadas Universidad Nacional de San Agustín de Arequipa, Escuela Profesional de Física, Laboratorio de Películas Delgadas Universidad Nacional de San Agustín de Arequipa, Escuela Profesional de Física, Laboratorio de Películas Delgadas CSIC-Universidad de Zaragoza, Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza, Instituto de Nanociencia y Materiales de Aragón (INMA) Universidad Nacional de San Agustín de Arequipa, Escuela Profesional de Física, Laboratorio de Películas Delgadas Universidade de Brasília, Instituto de Física, Laboratory of Magnetic Characterization |
Assunto:: | Nanopartículas de hematita Compostos de amônio quaternário Sensor de gás à temperatura ambiente |
Issue Date: | 25-May-2022 |
Publisher: | IOP Publishing Ltd |
Citation: | QUISPE, Luis T. et al. Synthesis and characterization of α-Fe 2O 3 nanoparticles showing potential applications for sensing quaternary ammonium vapor at room temperature. Nanotechnology, v. 33, n. 33, 2022. DOI: https://doi.org/10.1088/1361-6528/ac6c93. |
Abstract: | P-type and n-type metal oxide semiconductors are widely used in the manufacture of gas sensing materials, due to their excellent electronic, electrical and electrocatalytic properties. Hematite (α-Fe2O3) compound has been reported as a promising material for sensing broad types of gases, due to its affordability, good stability and semiconducting properties. In the present work, the efficient and easy-to-implement sol-gel method has been used to synthesize α-Fe2O3 nanoparticles (NPs). The TGA-DSC characterizations of the precursor gel provided information about the phase transformation temperature and the mass percentage of the hematite NPs. X-ray diffraction, transmission electron microscopy and x-ray photoelectron spectroscopy data analyses indicated the formation of two iron oxide phases (hematite and magnetite) when the NPs are subjected to thermal treatment at 400 °C. Meanwhile, only the hematite phase was determined for thermal annealing above 500 °C up to 800 °C. Besides, the crystallite size shows an increasing trend with the thermal annealing and no defined morphology. A clear reduction of surface defects, associated with oxygen vacancies was also evidenced when the annealing temperature was increased, resulting in changes on the electrical properties of hematite NPs. Resistive gas-sensing tests were carried out using hematite NPs + glycerin paste, to detect quaternary ammonium compounds. Room-temperature high sensitivity values (Sr ∼ 4) have been obtained during the detection of ∼1 mM quaternary ammonium compounds vapor. The dependence of the sensitivity on the particle size, the mass ratio of NPs with respect to the organic ligand, changes in the dielectric properties, and the electrical conduction mechanism of gas sensing was discussed. |
metadata.dc.description.unidade: | Instituto de Física (IF) |
DOI: | https://doi.org/10.1088/1361-6528/ac6c93 |
metadata.dc.relation.publisherversion: | https://iopscience.iop.org/article/10.1088/1361-6528/ac6c93 |
Appears in Collections: | Artigos publicados em periódicos e afins |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.