http://repositorio.unb.br/handle/10482/47152
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Cioletti, Leandro Martins | - |
dc.contributor.author | Enter, A. van | - |
dc.contributor.author | Ruviaro, Ricardo | - |
dc.date.accessioned | 2024-01-03T13:33:13Z | - |
dc.date.available | 2024-01-03T13:33:13Z | - |
dc.date.issued | 2023-01-03 | - |
dc.identifier.citation | CIOLETTI, L.; ENTER, A. van; RUVIARO, R. The double transpose of the Ruelle operator. Monatshefte für Mathematik, 2023. DOI: https://doi.org/10.1007/s00605-022-01818-7. | pt_BR |
dc.identifier.uri | http://repositorio2.unb.br/jspui/handle/10482/47152 | - |
dc.language.iso | eng | pt_BR |
dc.publisher | Springer | pt_BR |
dc.rights | Acesso Restrito | pt_BR |
dc.title | The double transpose of the Ruelle operator | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Operador de Ruelle | pt_BR |
dc.subject.keyword | Teoria Ergódica | pt_BR |
dc.identifier.doi | https://doi.org/10.1007/s00605-022-01818-7 | pt_BR |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s00605-022-01818-7 | pt_BR |
dc.description.abstract1 | In this paper we study the double transpose of the L1(X, B(X), ν)-extensions of the Ruelle transfer operator L f associated to a general real continuous potential f ∈ C(X), where X = EN, the alphabet E is any compact metric space and ν is a maximal eigenmeasure. For this operator, denoted by L∗∗ f , we prove the existence of some non negative eigenfunction, in the Banach lattice sense, associated to ρ(L f ), the spectral radius of the Ruelle operator acting on C(X). As an application, we obtain a sufficient condition ensuring that the extension of the Ruelle operator to L1(X, B(X), ν) has an eigenfunction associated to ρ(L f ). These eigenfunctions agree with the usual maximal eigenfunctions, when the potential f belongs to the Hölder,Walters or Bowen class. We also construct solutions to the classical and generalized variational problem, using the eigenvector constructed here. | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0002-8131-2043 | pt_BR |
dc.contributor.affiliation | Universidade de Brasília | pt_BR |
dc.contributor.affiliation | Johann Bernoulli Instituut, Rijksuniversiteit Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands | pt_BR |
dc.contributor.affiliation | Universidade de Brasília | pt_BR |
dc.description.unidade | Instituto de Ciências Exatas (IE) | pt_BR |
dc.description.unidade | Departamento de Matemática (IE MAT) | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.