Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/47152
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCioletti, Leandro Martins-
dc.contributor.authorEnter, A. van-
dc.contributor.authorRuviaro, Ricardo-
dc.date.accessioned2024-01-03T13:33:13Z-
dc.date.available2024-01-03T13:33:13Z-
dc.date.issued2023-01-03-
dc.identifier.citationCIOLETTI, L.; ENTER, A. van; RUVIARO, R. The double transpose of the Ruelle operator. Monatshefte für Mathematik, 2023. DOI: https://doi.org/10.1007/s00605-022-01818-7.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/47152-
dc.language.isoengpt_BR
dc.publisherSpringerpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleThe double transpose of the Ruelle operatorpt_BR
dc.typeArtigopt_BR
dc.subject.keywordOperador de Ruellept_BR
dc.subject.keywordTeoria Ergódicapt_BR
dc.identifier.doihttps://doi.org/10.1007/s00605-022-01818-7pt_BR
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00605-022-01818-7pt_BR
dc.description.abstract1In this paper we study the double transpose of the L1(X, B(X), ν)-extensions of the Ruelle transfer operator L f associated to a general real continuous potential f ∈ C(X), where X = EN, the alphabet E is any compact metric space and ν is a maximal eigenmeasure. For this operator, denoted by L∗∗ f , we prove the existence of some non negative eigenfunction, in the Banach lattice sense, associated to ρ(L f ), the spectral radius of the Ruelle operator acting on C(X). As an application, we obtain a sufficient condition ensuring that the extension of the Ruelle operator to L1(X, B(X), ν) has an eigenfunction associated to ρ(L f ). These eigenfunctions agree with the usual maximal eigenfunctions, when the potential f belongs to the Hölder,Walters or Bowen class. We also construct solutions to the classical and generalized variational problem, using the eigenvector constructed here.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-8131-2043pt_BR
dc.contributor.affiliationUniversidade de Brasíliapt_BR
dc.contributor.affiliationJohann Bernoulli Instituut, Rijksuniversiteit Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlandspt_BR
dc.contributor.affiliationUniversidade de Brasíliapt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.