Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/47152
Files in This Item:
There are no files associated with this item.
Title: The double transpose of the Ruelle operator
Authors: Cioletti, Leandro Martins
Enter, A. van
Ruviaro, Ricardo
metadata.dc.identifier.orcid: https://orcid.org/0000-0002-8131-2043
metadata.dc.contributor.affiliation: Universidade de Brasília
Johann Bernoulli Instituut, Rijksuniversiteit Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
Universidade de Brasília
Assunto:: Operador de Ruelle
Teoria Ergódica
Issue Date: 3-Jan-2023
Publisher: Springer
Citation: CIOLETTI, L.; ENTER, A. van; RUVIARO, R. The double transpose of the Ruelle operator. Monatshefte für Mathematik, 2023. DOI: https://doi.org/10.1007/s00605-022-01818-7.
Abstract: In this paper we study the double transpose of the L1(X, B(X), ν)-extensions of the Ruelle transfer operator L f associated to a general real continuous potential f ∈ C(X), where X = EN, the alphabet E is any compact metric space and ν is a maximal eigenmeasure. For this operator, denoted by L∗∗ f , we prove the existence of some non negative eigenfunction, in the Banach lattice sense, associated to ρ(L f ), the spectral radius of the Ruelle operator acting on C(X). As an application, we obtain a sufficient condition ensuring that the extension of the Ruelle operator to L1(X, B(X), ν) has an eigenfunction associated to ρ(L f ). These eigenfunctions agree with the usual maximal eigenfunctions, when the potential f belongs to the Hölder,Walters or Bowen class. We also construct solutions to the classical and generalized variational problem, using the eigenvector constructed here.
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
DOI: https://doi.org/10.1007/s00605-022-01818-7
metadata.dc.relation.publisherversion: https://link.springer.com/article/10.1007/s00605-022-01818-7
Appears in Collections:Artigos publicados em periódicos e afins

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/47152/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.