http://repositorio.unb.br/handle/10482/47153
Título: | Kirchhoff–Boussinesq-type problems with positive and zero mass |
Autor(es): | Carlos, Romulo Diaz Figueiredo, Giovany de Jesus Malcher Ruviaro, Ricardo |
Afiliação do autor: | Universidade de Brasília, Departamento de Matemática Universidade de Brasília, Departamento de Matemática Universidade de Brasília, Departamento de Matemática |
Assunto: | Kirchhoff–Boussinesq Massa zero Massa positiva |
Data de publicação: | 1-Fev-2023 |
Editora: | Taylor & Francis |
Referência: | CARLOS, Romulo D.; FIGUEIREDO, Giovany M.; RUVIARO, Ricardo. Kirchhoff–Boussinesq-type problems with positive and zero mass. Applicable Analysis, [S. l.], p. 16-28, fev. 2023. DOI: https://doi.org/10.1080/00036811.2023.2171875. |
Abstract: | Using variational methods we show the existence of solutions for the following class of elliptic Kirchhoff–Boussinesq-type problems given by Δ2u−Δpu+u=h(u),inRN and Δ2u−Δpu=f(u),inRN, where 2<p≤2NN−2 for N≥3 and 2∗∗=∞ for N = 3, N = 4, 2∗∗=2NN−4 for N≥5 and h and f are continuous functions that satisfy hypotheses considered by Berestycki and Lions [Nonlinear scalar field. Arch Rational Mech Anal. 1983;82:313–345]. More precisely, the problem with the nonlinearity h is related to the Positive mass case and the problem with the nonlinearity f is related to the Zero mass case. The main argument is to find a Palais–Smale sequence satisfying a property related to Pohozaev identity, as in Hirata et al. [Nonlinear scalar field equations in RN: mountain pass and symmetric mountain pass approaches. Topol Methods Nonlinear Anal. 2010;35:253–276], which was used for the first time by Jeanjean [On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer- type problem set on RN . |
Unidade Acadêmica: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
DOI: | https://doi.org/10.1080/00036811.2023.2171875 |
Versão da editora: | https://www.tandfonline.com/doi/full/10.1080/00036811.2023.2171875 |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.