Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/49670
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2024_FlaviaElisandraMagalhaesFurtado_TESE.pdf1,03 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorMaia, Liliane de Almeida-
dc.contributor.authorFurtado, Flávia Elisandra Magalhães-
dc.date.accessioned2024-08-08T16:29:02Z-
dc.date.available2024-08-08T16:29:02Z-
dc.date.issued2024-08-08-
dc.date.submitted2024-05-08-
dc.identifier.citationFURTADO, Flávia Elisandra Magalhães. Stationary solutions to a degenerate logistic equation with superlinear or asymptotically linear nonlinearity. 2024. 83 f. Tese (Doutorado em Matemática) — Universidade de Brasília, Brasília, 2024.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/49670-
dc.descriptionTese (doutorado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2024.pt_BR
dc.description.abstractNeste trabalho estamos interessados em resolver o problema logístico estacionário com termo superlinear ( −∆u = λu − b(x)f(u) em Ω u = 0 em ∂Ω (P) em que Ω ⊂ R N é domínio aberto limitado com bordo ∂Ω suave, λ é um parâmetro real positivo, b : Ω → R é uma função contínua em L∞(Ω) tal que b(x) é não negativa com Ω0 = {x ∈ Ω : b(x) = 0} subconjunto conexo, regular e com medida de Lebesgue |Ω0| > 0. Sob essas condições, juntamente com a variedade de Nehari e o Teorema do Passo da Montanha, mostramos primeiramente, no caso em que f(s) é superlinear e subcrítica quando s tende a ±∞, que o problema (P) possui uma solução positiva e uma solução que muda de sinal em u ∈ H1 0 (Ω). Além disso, no segundo caso em que f(s) é assintoticamente linear no infinito o termo linear λu em (P) é substituído por um termo mais geral λa(x)u, com a : Ω → R função em L∞(Ω) com a(x) > 0 q.t.p. em Ω, mostraremos também a existência de solução positiva única e uma solução que muda de sinal, utilizando os mesmos métodos anteriores e a teoria espectral com peso.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).pt_BR
dc.language.isoengpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleStationary solutions to a degenerate logistic equation with superlinear or asymptotically linear nonlinearitypt_BR
dc.title.alternativeSoluções estacionárias para uma equação logística degenerada com nãolinearidade superlinear ou assintoticamente linearpt_BR
dc.typeTesept_BR
dc.subject.keywordTeoremas do passo da montanhapt_BR
dc.subject.keywordVariedade de Nehaript_BR
dc.subject.keywordProblemas assintoticamente linearespt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1In this work we are interested in solving the stationary logistic problem with a superlinear nonlinearity ( −∆u = λu − b(x)f(u) in Ω u = 0 on ∂Ω (P) where Ω ⊂ R N is bounded open domain with ∂Ω smooth, λ is a positive real parameter, b : Ω → R is a function in L∞(Ω) such that b(x) is non-negative with Ω0 = {x ∈ Ω : b(x) = 0} is a connected, regular subset and with Lebesgue measure |Ω0| > 0. Under these conditions, along with Nehari’s manifold and the Mountain Pass Theorem, we first show, in the case where f(s) is superlinear and subcritical as s tends to ±∞, that the problem (P) has a positive solution and a solution that changes sign at u ∈ H1 0 (Ω). Furthermore, in the second case where f(s) is asymptotically linear at infinity, the linear term λu in (P) is replaced by a more general term λa(x)u, with a : Ω → R a function in L∞(Ω) with a(x) > 0 a.e. in Ω. We will also show the existence of a unique positive solution and a solution that changes sign, using the same previous methods and spectral theory with weight.pt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Matemáticapt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.