http://repositorio.unb.br/handle/10482/50390
File | Description | Size | Format | |
---|---|---|---|---|
ARTIGO_OnPro_pCappittGroups.pdf | 402,26 kB | Adobe PDF | View/Open |
Title: | On Pro-p Cappitt Groups with finite exponent |
Authors: | Porto, Anderson Luiz Pedrosa Lima, Igor dos Santos |
metadata.dc.identifier.orcid: | https://orcid.org/0000-0002-8800-0827 |
metadata.dc.contributor.affiliation: | Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Ciência e Tecnologia - ICT, Diamantina - MG Universidade de Brasília, Departamento de Matemática Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Ciência e Tecnologia - ICT, Diamantina - MG Universidade de Brasília, Departamento de Matemática |
Assunto:: | Grupos pro-p Cappitt Grupos de Torção |
Issue Date: | 2-May-2024 |
Publisher: | Académie des Sciences |
Citation: | PORTO, Anderson; LIMA, Igor. On Pro-p Cappitt Groups with finite exponent. Comptes Rendus. Mathématique, [S. l.], v. 362 , pp. 287-292, 2024. DOI: https://doi.org/10.5802/crmath.562. Disponível em: https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.562/. Acesso em: 19 set. 2024. |
Abstract: | A pro-p Cappitt group is a pro-p group G such that Se(G) = 〈L ⩽c G |L ⋪G〉 is a proper subgroup (i.e. Se(G) ̸= G). In this paper we prove that non-abelian pro-p Cappitt groups whose torsion subgroup is closed and it has finite exponent. This result is a natural continuation of main result of the first author [7]. We also prove that in a pro-p Cappitt group its subgroup commutator is a procyclic central subgroup. Finally we show that pro-2 Cappitt groups of exponent 4 are pro-2 Dedekind groups. These results are pro-p versions of the generalized Dedekind groups studied by Cappitt (see Theorem 1 and Lemma 7 in [1]). |
metadata.dc.description.unidade: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
Licença:: | (CC BY) This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/ |
DOI: | https://doi.org/10.5802/crmath.562 |
Appears in Collections: | Artigos publicados em periódicos e afins |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.