Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/7922
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_IdentificacaoRegionalFlorestaEstacional.pdf1,25 MBAdobe PDFVisualizar/Abrir
Título: Identificação regional da Floresta Estacional Decidual na bacia do Rio Paranã a partir da análise multitemporal de imagens MODIS
Autor(es): Carvalho Júnior, Osmar Abílio de
Hermuche, Potira Meirelles
Guimarães, Renato Fontes
Assunto: Matas secas
Processamento de imagens - técnicas digitais
Sensoriamento remoto
Cerrados - florestas
Data de publicação: Jul-2006
Referência: CARVALHO JÚNIOR, Osmar Abílio de; HERMUCHE, Potira Meirelles; GUIMARÃES, Renato Fontes. Identificação regional da Floresta Estacional Decidual na bacia do Rio Paranã a partir da análise multitemporal de imagens MODIS. Revista Brasileira de Geofísica, São Paulo, v. 24, n. 3, p. 319-332, jul./set. 2006. Disponível em: <http://www.scielo.br/pdf/rbg/v24n3/a02v24n3.pdf>. Acesso em: 25 abr. 2011. doi: 10.1590/S0102-261X2006000300002.
Resumo: A bacia hidrográfica do rio Paranã possui um dos maiores fragmentos da Floresta Estacional Decidual no Brasil, também chamada de Mata Seca. Esse tipo de vegetação apresenta-se bastante fragmentada principalmente pela exploração seletiva de madeira e ampliação de áreas destinadas à pastagem, o que torna necessário estudos para compreensão de sua dinâmica e manutenção de sua diversidade, cuja flora é muitas vezes endêmica. Nesse sentido, o presente trabalho teve como objetivo definir um método de identificação regional da Mata Seca na bacia hidrográfica do rio Paranã. Devido ao comportamento sazonal desse tipo de vegetação foi utilizada na sua detecção uma seqüência temporal de imagens do índice NDVI do sensor MODIS. A metodologia pode ser subdividida nas seguintes etapas: (a) confecção de um cubo 3D relativo à série de imagens temporais do índice NVDI, (b) tratamento do ruído presente no espectro do NDVI multitemporal utilizando o método Minimum Noise Fraction (MNF) e (c) análise do espectro do NDVI multitemporal com a formulação de um índice com o propósito de realçar a presença da Mata Seca. A Mata Seca apresenta um comportamento espectral do NDVI multitemporal típico com os valores mais altos na época de chuva e mais baixos na época de estiagem, diferenciando-se dos demais tipos de vegetação. O método de detecção de mudança pela subtração permitiu realçara a localização da ocorrência de Mata Seca. Desta forma, a metodologia adotada mostrou-se eficaz para a delimitação regional da Mata Seca.
Abstract: Paranã river basin has one of the major fragments of Decidual Seasonal Forest in Brazil. This vegetation is widely fragmented due to the selective wood exploitation and the growth of pasture areas, what justifies the development of studies in order to understand its dynamics and preserve its diversity. Thus, the present study aimed at defining a method for regional identification of the Deciduous Forest in the Paranã river basin. The deciduous forest has a typical phenological cycle in comparison with other savanna physiognomies. Due these characteristics, a temporal series of normalized difference vegetation index (NDVI) images of the MODIS sensor was used for its detection. The adopted methodology may be subdivided into the following steps: (a) elaboration of the 3D cube of NDVI images, where the z profile corresponding to temporal signature or NDVI spectrum, (b) noise elimination using the Minimum Noise Fraction (MNF) transformation, and (c) NDVI temporal variability examination of deciduous forest vegetation, with the establishment of the best NDVI band applied in the vegetation index differencing method. The Deciduous Forest presents a typical NDVI spectral behaviour, with higher values in the raining season and lower values in the dry season, what makes this kind of vegetation different from others. The employment of a changing detection algorithm between two images: one for the dry season and the other for the raining season enhances the localization of the Decidual Seasonal Forest. So, the methodology has proved to be effective for regional delimitation of Deciduous Forests considering the MODIS sensor. Considering the changing detection method, Deciduous Forest region is characterized by presenting NDVI alteration values.
DOI: https://dx.doi.org/10.1590/S0102-261X2006000300002
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro completo do item Visualizar estatísticas



Este item está licenciada sob uma Licença Creative Commons Creative Commons