Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/9144
Files in This Item:
File Description SizeFormat 
2011_EdinelsonFerreiradeSena.pdf23,81 MBAdobe PDFView/Open
Title: Classificação de imagens do radar de abertura sintética do SIPAM com síntese genética de redes neurais artificiais
Authors: Sena, Edinelson Ferreira de
Orientador(es):: Santa Rosa, Antônio Nuno de Castro
Assunto:: Redes neurais (Computação)
Recursos hídricos
Geociências
Issue Date: 2-Aug-2011
Citation: SENA, Edinelson Ferreira de. Classificação de imagens do radar de abertura sintética do SIPAM com síntese genética de redes neurais artificiais. 2011. xv, 111 f., il. Dissertação (Mestrado em Geociências Aplicadas)-Universidade de Brasília, Brasília, 2011.
Abstract: O presente trabalho trata da utilização dos recursos nacionais para produção de conhecimento sobre a região administrativa de Planaltina no DF. Esses recursos são imagens da banda L do radar de abertura sintética do SIPAM (SAR/R99) e um classificador não-supervisionado de síntese genética de redes neurais artificiais. O objetivo principal foi avaliar o potencial desse classificador para designação de alvos terrestres. A metodologia adotada envolveu técnicas de processamento digital de imagens, classificação e análise dos resultados. Os resultados indicaram que, dentro dos parâmetros estudados, o classificador atendeu às necessidades propostas e tem aplicação de forma auxiliar nas tarefas de interpretação de imagens, visando apoio à decisão em diversos ramos profissionais. _______________________________________________________________________________ ABSTRACT
This paper deals with the use of national resources for the production of knowledge about the administrative region of Planaltina DF. These features are images of the SIPAM’s L-band Synthetic Aperture Radar (SAR/R99) and an unsupervised classifier for gene synthesis of artificial neural networks. The main objective was to evaluate the potential of these classifiers for the designation of ground targets. The adopted methodology included techniques of digital image processing, classification and analysis of results. With that, we reached the conclusion that the classification has real application in the task of image interpretation, decision support aimed at various professions.
Description: Dissertação (mestrado)—Universidade de Brasília, Instituto de Geociências, 2011.
Appears in Collections:Teses, dissertações e produtos pós-doutorado

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/9144/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.