http://repositorio.unb.br/handle/10482/18477
Fichier | Description | Taille | Format | |
---|---|---|---|---|
2015_ElaineCristinedeSouzaSilva.pdf | 1,31 MB | Adobe PDF | Voir/Ouvrir |
Titre: | Alguns resultados relacionados a números de Liouville |
Auteur(s): | Silva, Elaine Cristine de Souza |
Orientador(es):: | Ferreira, Diego Marques |
Assunto:: | Números de Liouville Conjectura de Schanuel |
Date de publication: | 29-jui-2015 |
Data de defesa:: | 11-mar-2015 |
Référence bibliographique: | SILVA, Elaine Cristine de Souza. Alguns resultados relacionados a números de Liouville. 2015. xii, 70 f. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2015. |
Résumé: | Esta dissertação trata dos números de Liouville. O estudo foi baseado nos trabalhos de Burger, Caveny, Kumar, Thangadurai e Waldschmidt. Dentre os principais resultados deste trabalho, destacam-se: a generalização de um resultado de Erdos, ao provar que alguns números reais podem ser escritos como F(σ;Ƭ), onde σ e Ƭ são números de Liouville, para uma classe muito grande de funções F(x; y); a determinação de condições suficientes para que a potenciação de números transcendentes seja um número transcendente; e a apresentação de resultados recentes sobre independência algébrica relacionados com os números de Liouville e a Conjectura de Schanuel. |
Abstract: | This work is about Liouville numbers. The study was based on works due to Burger, Caveny, Kumar, Thangadurai and Waldschmidt. Among the main results, we highlight: a generalization of an Erd os result, proving that some real numbers can be written as F(σ, Ƭ ), where σ and Ƭ are Liouville numbers, for a very large class of functions F(x; y); some sufficient conditions for which the power of two transcendental numbers is still transcendental; and some recent results about algebraic independence related to Liouville numbers and Schanuel's conjecture. |
metadata.dc.description.unidade: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
Description: | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2015. |
metadata.dc.description.ppg: | Programa de Pós-Graduação em Matemática |
Licença:: | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. |
DOI: | http://dx.doi.org/10.26512/2015.03.D.18477 |
Collection(s) : | Teses, dissertações e produtos pós-doutorado |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.