Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/21603
Files in This Item:
File Description SizeFormat 
2016_EmersonGrzeidak.pdf5,15 MBAdobe PDFView/Open
Title: Identification of nonlinear systems based on extreme learning machine
Other Titles: Identificação de sistemas não lineares baseado em aprendizado do extremo e redes neurais multicamadas
Authors: Grzeidak, Emerson
Orientador(es):: Ruiz Vargas, José Alfredo
Assunto:: Redes neurais (Computação)
Aprendizagem - computadores
Métodos de Lyapunov
Sistemas não-lineares
Issue Date: 21-Oct-2016
Citation: GRZEIDAK, Emerson. Identification of nonlinear systems based on extreme learning machine. 2016. x, 152 f., il. Dissertação (Mestrado em Sistemas Mecatrônicos)—Universidade de Brasília, Brasília, 2016.
Abstract: O presente trabalho considera o problema de identificação de sistemas não-lineares comestrutura incerta na presença de distúrbios limitados. Dado a estrutura incerta do sistema, a estimação dos estados é baseada em redes neurais com uma camada escondida e então, para assegurar a convergência dos erros residuais de estimação dos estados para zero, as leis de aprendizagem são projetadas usando a teoria de estabilidade de Lyapunov e resultados já disponíveis na teoria de controle adaptativo. Primeiramente, um esquema de identificação usando aprendizagem extrema é apresentado. O modelo proposto assegura a convergência dos erros residuais de estimação dos estados para zero e a limitação de todos os demais erros e distúrbios. Usando o lema de Barbalat e uma análise tipo Lyapunov, é empregado um modelo de rede neural dinâmica com uma camada escondida (SHLNN) gerada aleatoriamente para assegurar as propriedades supramencionadas. Dessa maneira, assegura-se uma convergência mais rápida e melhor eficiência computacional do que os modelos SHLNN convencionais. Além disso, com algumas modificações que envolvem a seleção da função ativação e a estrutura do vetor regressor, o algoritmo proposto pode ser aplicado para qualquer rede neural parametrizável linearmente. Em seguida, como uma extensão da metodologia proposta, um modelo de rede neural com uma camada escondida e parametrizável não-linearmente (SHLNN) é estudado. Os pesos da camada escondida e de saída são ajustados simultaneamente por leis adaptativas robustas obtidas através da teoria de estabilidade de Lyapunov. O segundo esquema também assegura a convergência dos erros residuais de estimação dos estados para zero e a limitação de todos os demais erros de aproximação associados, mesmo na presença de erros de aproximação e distúrbios. Adicionalmente, como no primeiro esquema, não é necessário conhecimento prévio sobre os pesos ideias, erros de aproximação ou distúrbios. Simulações extensivas para a validação dos resultados teóricos e demonstração dos métodos propostos são fornecidos.
Abstract: The present research work considers the identification problem of nonlinear systems with uncertain structure and in the presence of bounded disturbances. Given the uncertain structure of the system, the state estimation is based on single-hidden layer neural networks and then, to ensure the convergence of the state estimation residual errors to zero, the learning laws are designed using the Lyapunov stability theory and already available results in adaptive control theory. First, an identification scheme via extreme learning machine neural network is developed. The proposed model ensures the convergence of the state estimation residual errors to zero and boundedness of all associated approximation errors, even in the presence of approximation error and disturbances. Lyapunov-like analysis using Barbalat’s Lemma and a dynamic single-hidden layer neural network (SHLNN) model with hidden nodes randomly generated to establish the aforementioned properties are employed. Hence, faster convergence and better computational efficiency than conventional SHLNNs is assured. Furthermore, with a few modifications regarding the selection of activation function and the regressor vector’s structure, the proposed algorithm can be applied to any linearly parameterized neural network model. Next, as an extension of the proposed methodology, a nonlinearly parameterized single-hidden layer neural network model (SHLNN) is studied. The hidden and output weights are simultaneously adjusted by robust adaptive laws that are designed via Lyapunov stability theory. The second scheme also ensures the convergence of the state estimation residual errors to zero and boundedness of all associated approximation errors, even in the presence of approximation error and disturbances. Additionally, as in the first scheme, it is not necessary any previous knowledge about the ideal weights, approximation error and disturbances. Extensive simulations to validate the theoretical results and show the effectiveness of the two proposed methods are also provided.
metadata.dc.description.unidade: Faculdade de Tecnologia (FT)
Departamento de Engenharia Mecânica (FT ENM)
Description: Dissertação (mestrado)—Universidade de Brasília, Programa de Pós-Graduação em Sistemas Mecatrônicos, 2016.
metadata.dc.description.ppg: Programa de Pós-Graduação em Sistemas Mecatrônicos
Licença:: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
DOI: http://dx.doi.org/10.26512/2016.06.D.21603
Appears in Collections:Teses, dissertações e produtos pós-doutorado

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/21603/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.