Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/32193
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2018_BrunodePaulaMiranda.pdf912,65 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorGodinho, Hemar Teixeira-
dc.contributor.authorMiranda, Bruno de Paula-
dc.date.accessioned2018-07-09T17:43:26Z-
dc.date.available2018-07-09T17:43:26Z-
dc.date.issued2018-07-04-
dc.date.submitted2018-03-09-
dc.identifier.citationMIRANDA, Bruno de Paula. Diagonal forms over the unramified quadratic extension of Q2. 2018. 71 f. Tese (Doutorado em Matemática)—Universidade de Brasília, Brasília, 2018.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/32193-
dc.descriptionTese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2018.pt_BR
dc.description.abstractEm 1963, e Lewis provaram que se a forma diagonal F(x) = a1xd1 +...+ aNxdN com coeficientes em Qp, o corpo dos números p-ádicos, satisfazer N > d2, então existe solução não trivial para F(x) = 0. Muito estudo tem sido realizado afim de generalizar esse resultado para extensões finitas de Qp. Aqui, estudamos o caso F(x) 2 K[x] com K sendo a extensão quadrática não ramificada de Q2 e provamos dois resultados: Se d não _e potência de 2, então N > d2 garante a existência de solucão não trivial para F(x) = 0. Além disso, se d = 6, N = 29 garante existência de solucão não trivial para F(x) = 0.pt_BR
dc.language.isoInglêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleDiagonal forms over the unramified quadratic extension of Q2pt_BR
dc.typeTesept_BR
dc.subject.keywordFormas diagonaispt_BR
dc.subject.keywordExtensões não rami cadaspt_BR
dc.subject.keywordConjectura de Artinpt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1In 1963, Davenport and Lewis proved that if the diagonal form F(x) = a1xd1 +...+ aNxdN with coeficients in Qp, the field of p-adic numbers, satisfies N > d2, then there exists non-trivial solution for F(x) = 0. Since then, there has been a lot of study in order to generalize this result to finite extensions of Qp. Here, we study the case F(x) 2 K[x] where K is the quadratic unramified extension of Q2 and we prove two results: if d is not a power of 2 , then N > d2 guarantees non-trivial solution for F(x) = 0. Furthermore, if d = 6, N = 29 guarantees non-trivial solution for F(x) = 0.pt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.