http://repositorio.unb.br/handle/10482/41934
Fichier | Description | Taille | Format | |
---|---|---|---|---|
PREPRINT_Stochasticn-pointD-bifurcations.pdf | 638,97 kB | Adobe PDF | Voir/Ouvrir |
Titre: | Stochastic n-point D-bifurcations of stochastic Lévy flows and their complexity on finite spaces |
Auteur(s): | Costa, Paulo Henrique Pereira da Högele, Michael A. Ruffino, Paulo R. |
Assunto:: | Probabilidades Sistemas dinâmicos |
Date de publication: | 2021 |
Référence bibliographique: | COSTA, Paulo Henrique Pereira da; HÖGELE, Michael A.; RUFFINO, Paulo R. Stochastic n-point D-bifurcations of stochastic Lévy flows and their complexity on finite spaces. arXiv, 2021. Disponível em: https://arxiv.org/abs/1502.07915v5. |
Abstract: | This article refines the classical notion of a stochastic D-bifurcation to the respective family of n-point motions for homogeneous Markovian stochastic semiflows, such as stochastic Brownian flows of homeomorphisms, and their generalizations. This notion essentially detects at which level k≤n the support of the invariant measure of the k-point bifurcation has more than one connected component. Stochastic Brownian flows and their invariant measures which were shown by Kunita (1990) to be rigid, in the sense of being uniquely determined by the 1-and 2-point motions, and hence only stochastic n-point bifurcation of level n=1 or n=2 can occur. For general homogeneous stochastic Markov semiflows this turns out to be false. This article constructs minimal examples of where this rigidity is false in general on finite space and studies the complexity of the resulting n-point bifurcations. |
metadata.dc.description.unidade: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
Licença:: | Autorização concedida a Biblioteca Central da Universidade de Brasília pelo Professor Paulo Henrique Pereira da Costa, em 14 de agosto de 2021, para disponibilizar a obra, gratuitamente, para fins acadêmicos e não comerciais (leitura, impressão e/ou download) a partir desta data. A obra continua protegida por Direito Autoral e/ou por outras leis aplicáveis. Qualquer uso da obra que não o autorizado sob esta licença ou pela legislação autoral é proibido. |
Collection(s) : | Artigos publicados em periódicos e afins |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.