Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/43499
Files in This Item:
File Description SizeFormat 
ARTIGO_BifurcationAnalysisModified.pdf555,33 kBAdobe PDFView/Open
Title: Bifurcation analysis for a modified quasilinear equation with negative exponent
Authors: Siyu Chen
Santos, Carlos Alberto Pereira dos
Minbo Yang
Jiazheng Zhou
Assunto:: Schrödinger, Equação de
Expoente
Issue Date: 2022
Publisher: De Gruyter
Citation: Siyu Chen et al. Bifurcation analysis for a modified quasilinear equation with negative exponent. Advances in Nonlinear Analysis, v. 11, n. 1, p. 684-701, 2022. DOI: https://doi.org/10.1515/anona-2021-0215. Disponível em: https://www.degruyter.com/document/doi/10.1515/anona-2021-0215/html. Acesso em: 18 abr. 2022.
Abstract: In this paper, we consider the following modified quasilinear problem: {−∆u − κu∆u2 = λa(x)u−α + b(x)u β in Ω, u > 0 in Ω, u = 0 on ∂Ω, where Ω ⊂ ℝN is a smooth bounded domain, N ≥ 3, a, b are two bounded continuous functions, α > 0, 1 < β ≤ 22* − 1 and λ > 0 is a bifurcation parameter. We use the framework of analytic bifurcation theory to obtain an analytic global unbounded path of solutions to the problem. Moreover, we get the direction of solution curve at the asmptotic point.
Licença:: Open Access. © 2021 Siyu Chen et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution alone 4.0 License (CC BY).
DOI: https://doi.org/10.1515/anona-2021-0215
Appears in Collections:Artigos publicados em periódicos e afins

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/43499/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.