Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/43499
Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ARTIGO_BifurcationAnalysisModified.pdf555,33 kBAdobe PDFVoir/Ouvrir
Titre: Bifurcation analysis for a modified quasilinear equation with negative exponent
Auteur(s): Siyu Chen
Santos, Carlos Alberto Pereira dos
Minbo Yang
Jiazheng Zhou
Assunto:: Schrödinger, Equação de
Expoente
Date de publication: 2022
Editeur: De Gruyter
Référence bibliographique: Siyu Chen et al. Bifurcation analysis for a modified quasilinear equation with negative exponent. Advances in Nonlinear Analysis, v. 11, n. 1, p. 684-701, 2022. DOI: https://doi.org/10.1515/anona-2021-0215. Disponível em: https://www.degruyter.com/document/doi/10.1515/anona-2021-0215/html. Acesso em: 18 abr. 2022.
Abstract: In this paper, we consider the following modified quasilinear problem: {−∆u − κu∆u2 = λa(x)u−α + b(x)u β in Ω, u > 0 in Ω, u = 0 on ∂Ω, where Ω ⊂ ℝN is a smooth bounded domain, N ≥ 3, a, b are two bounded continuous functions, α > 0, 1 < β ≤ 22* − 1 and λ > 0 is a bifurcation parameter. We use the framework of analytic bifurcation theory to obtain an analytic global unbounded path of solutions to the problem. Moreover, we get the direction of solution curve at the asmptotic point.
Licença:: Open Access. © 2021 Siyu Chen et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution alone 4.0 License (CC BY).
DOI: https://doi.org/10.1515/anona-2021-0215
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/43499/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.