http://repositorio.unb.br/handle/10482/48357
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
BrunoRodolfoDeOliveiraFloriano_TESE.pdf | 2,46 MB | Adobe PDF | Visualizar/Abrir |
Título: | Neural-network-based model predictive control for consensus of nonlinear systems |
Outros títulos: | Controle preditivo baseado em redes neurais para consenso de sistemas não-lineares |
Autor(es): | Floriano, Bruno Rodolfo de Oliveira |
Orientador(es): | Ferreira, Henrique Cezar |
Coorientador(es): | Ishihara, João Yoshiyuki |
Assunto: | Modelo de controle preditivo Redes neurais (Computação) Controle de consenso Sistemas multiagentes |
Data de publicação: | 20-Jun-2024 |
Data de defesa: | 15-Dez-2023 |
Referência: | FLORIANO, Bruno Rodolfo de Oliveira. Neural-network-based model predictive control for consensus of nonlinear systems. 2023. 90 f., il. Tese (Doutorado em Engenharia Elétrica) — Universidade de Brasília, Brasília, 2023. |
Resumo: | Este trabalho aborda, através do método de controle preditivo, o problema de consenso para sistemas multiagentes não lineares a tempo discreto sujeitos a topologias de comunicação chaveadas. Para sistemas multiagentes não lineares que seguem uma lei de chaveamento aleatório, não há soluções baseadas em controle preditivo que resultam em uma otimização confiável em tempo real. Nós propomos um novo algoritmo baseado em redes neurais que reduz os efeitos das deficiências de comunicação, causados pelo chaveamento Markoviano, aproximando e minimizando, em tempo real, a função de custo do controle preditivo. A conveniência do método proposto é certificada em simulações para diferentes cenários e aplicações. Finalmente, os passos futuros da atual pesquisa são detalhados. |
Abstract: | This work addresses, through a model predictive control (MPC) approach, the consensus problem for discrete-time nonlinear multi-agent systems subjected to switching communication topologies. For systems following a random switching law, there is not any MPC solution that results in a reliable optimization in real-time. We propose a new neural-network-based algorithm that reduces the effects of communication deficiencies, caused by Markovian switching, by approximating and minimizing, in real-time, the MPC’s cost function. The convenience of the proposed method is certified in simulations for different applications and scenarios. Finally, the future steps of the current research are detailed. |
Unidade Acadêmica: | Faculdade de Tecnologia (FT) Departamento de Engenharia Elétrica (FT ENE) |
Informações adicionais: | Tese (doutorado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2023. |
Programa de pós-graduação: | Programa de Pós-Graduação em Engenharia Elétrica |
Licença: | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. |
Agência financiadora: | Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). |
Aparece nas coleções: | Teses, dissertações e produtos pós-doutorado |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.