Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/44466
Files in This Item:
File Description SizeFormat 
2022_GermanAlejandroJimenezFranco.pdf799,98 kBAdobe PDFView/Open
Title: Superfícies mínimas singulares invariantes
Authors: Jimenez Franco, German Alejandro
metadata.dc.contributor.email: germanjf01@hotmail.com
Orientador(es):: Santos, João Paulo dos
Assunto:: Superfícies mínimas singulares
Superfícies cilíndricas
Superfícies de rotação
Issue Date: 9-Aug-2022
Citation: JIMENEZ FRANCO, German Alejandro. Superfícies mínimas singulares invariantes. 2022. 71 f., il. Dissertação (Mestrado em Matemática) — Universidade de Brasília, Brasília, 2022.
Abstract: Uma superfície mínima singular M no espaço Euclidiano R 3 é uma superfície cuja curvatura média satisfaz 2H = α ⟨N,a⟩ ⟨p,a⟩ , em que α é uma constante real, p ∈ M, a é um vetor fixo não nulo de R 3 e N é o vetor normal unitário de M em p. Superfícies mínimas singulares são pontos críticos de um determinado funcional energia e também são dadas por superfícies mínimas em (R 3 ,g), em que g pertence a uma classe de métricas conformes à métrica Euclidiana. Baseado no artigo López [Ann. Global Anal. Geom. 53 (2018)], apresentamos nesta dissertação um estudo de superfícies mínimas singulares invariantes sob as ações de dois tipos de grupos a 1-parâmetro de movimentos rígidos de R 3 , a saber, o grupo de rotações e o grupo de translações.
Abstract: A minimal singular surface M in Euclidean space R 3 is a surface whose mean curvature satisfies 2H = α ⟨N,a⟩ ⟨p,a⟩ , where α is a real constant, p ∈ M, a is a fixed vector of R 3 , N is the unit normal vector of M in p. Singular minimal surfaces are critical points of a determined functional energy and they are also given by minimal surfaces in (R 3 ,g), where g belongs to a class of metrics conformal to the Euclidean metric. Based on the article López [Ann. Global Anal. Geom. 53 (2018)], we present in this dissertation a study of singular minimal surfaces that are invariant by two types of uniparametric groups of rigid motions of R 3 , namely, the rotation group and the translation group.
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
Description: Dissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2022.
metadata.dc.description.ppg: Programa de Pós-Graduação em Matemática
Licença:: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
Agência financiadora: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
Appears in Collections:Teses, dissertações e produtos pós-doutorado

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/44466/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.